MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0oo Structured version   Visualization version   GIF version

Theorem 0oo 27028
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oo.1 𝑋 = (BaseSet‘𝑈)
0oo.2 𝑌 = (BaseSet‘𝑊)
0oo.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0oo ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)

Proof of Theorem 0oo
StepHypRef Expression
1 fvex 6113 . . . . 5 (0vec𝑊) ∈ V
21fconst 6004 . . . 4 (𝑋 × {(0vec𝑊)}):𝑋⟶{(0vec𝑊)}
3 0oo.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 eqid 2610 . . . . . 6 (0vec𝑊) = (0vec𝑊)
53, 4nvzcl 26873 . . . . 5 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
65snssd 4281 . . . 4 (𝑊 ∈ NrmCVec → {(0vec𝑊)} ⊆ 𝑌)
7 fss 5969 . . . 4 (((𝑋 × {(0vec𝑊)}):𝑋⟶{(0vec𝑊)} ∧ {(0vec𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
82, 6, 7sylancr 694 . . 3 (𝑊 ∈ NrmCVec → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
98adantl 481 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
10 0oo.1 . . . 4 𝑋 = (BaseSet‘𝑈)
11 0oo.0 . . . 4 𝑍 = (𝑈 0op 𝑊)
1210, 4, 110ofval 27026 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec𝑊)}))
1312feq1d 5943 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋𝑌 ↔ (𝑋 × {(0vec𝑊)}):𝑋𝑌))
149, 13mpbird 246 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wss 3540  {csn 4125   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  NrmCVeccnv 26823  BaseSetcba 26825  0veccn0v 26827   0op c0o 26982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-grpo 26731  df-gid 26732  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-0o 26986
This theorem is referenced by:  0lno  27029  nmoo0  27030  nmlno0lem  27032
  Copyright terms: Public domain W3C validator