Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ome Structured version   Visualization version   GIF version

Theorem 0ome 39419
Description: The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
0ome.1 (𝜑𝑋𝑉)
0ome.2 𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0)
Assertion
Ref Expression
0ome (𝜑𝑂 ∈ OutMeas)
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑂(𝑥)   𝑉(𝑥)

Proof of Theorem 0ome
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋 ↦ 0) = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
2 0e0iccpnf 12154 . . . . . . . . . 10 0 ∈ (0[,]+∞)
32a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋 → 0 ∈ (0[,]+∞))
41, 3fmpti 6291 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞)
5 0ome.2 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0)
6 eqidd 2611 . . . . . . . . . . . 12 (𝑥 = 𝑦 → 0 = 0)
76cbvmptv 4678 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑋 ↦ 0) = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
85, 7eqtri 2632 . . . . . . . . . 10 𝑂 = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
98feq1i 5949 . . . . . . . . 9 (𝑂:dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):dom 𝑂⟶(0[,]+∞))
108dmeqi 5247 . . . . . . . . . . 11 dom 𝑂 = dom (𝑦 ∈ 𝒫 𝑋 ↦ 0)
11 0re 9919 . . . . . . . . . . . . 13 0 ∈ ℝ
1211rgenw 2908 . . . . . . . . . . . 12 𝑦 ∈ 𝒫 𝑋0 ∈ ℝ
13 dmmptg 5549 . . . . . . . . . . . 12 (∀𝑦 ∈ 𝒫 𝑋0 ∈ ℝ → dom (𝑦 ∈ 𝒫 𝑋 ↦ 0) = 𝒫 𝑋)
1412, 13ax-mp 5 . . . . . . . . . . 11 dom (𝑦 ∈ 𝒫 𝑋 ↦ 0) = 𝒫 𝑋
1510, 14eqtri 2632 . . . . . . . . . 10 dom 𝑂 = 𝒫 𝑋
1615feq2i 5950 . . . . . . . . 9 ((𝑦 ∈ 𝒫 𝑋 ↦ 0):dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞))
179, 16bitri 263 . . . . . . . 8 (𝑂:dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞))
184, 17mpbir 220 . . . . . . 7 𝑂:dom 𝑂⟶(0[,]+∞)
19 unipw 4845 . . . . . . . . . 10 𝒫 𝑋 = 𝑋
2019pweqi 4112 . . . . . . . . 9 𝒫 𝒫 𝑋 = 𝒫 𝑋
2120eqcomi 2619 . . . . . . . 8 𝒫 𝑋 = 𝒫 𝒫 𝑋
2215eqcomi 2619 . . . . . . . . . 10 𝒫 𝑋 = dom 𝑂
2322unieqi 4381 . . . . . . . . 9 𝒫 𝑋 = dom 𝑂
2423pweqi 4112 . . . . . . . 8 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂
2515, 21, 243eqtri 2636 . . . . . . 7 dom 𝑂 = 𝒫 dom 𝑂
2618, 25pm3.2i 470 . . . . . 6 (𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂)
27 0elpw 4760 . . . . . . 7 ∅ ∈ 𝒫 𝑋
28 eqidd 2611 . . . . . . . 8 (𝑦 = ∅ → 0 = 0)
2911elexi 3186 . . . . . . . 8 0 ∈ V
3028, 8, 29fvmpt 6191 . . . . . . 7 (∅ ∈ 𝒫 𝑋 → (𝑂‘∅) = 0)
3127, 30ax-mp 5 . . . . . 6 (𝑂‘∅) = 0
3226, 31pm3.2i 470 . . . . 5 ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0)
3311leidi 10441 . . . . . . . . 9 0 ≤ 0
3433a1i 11 . . . . . . . 8 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 0 ≤ 0)
35 elpwi 4117 . . . . . . . . . . . . 13 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
3635adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧𝑦)
37 id 22 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 dom 𝑂)
3821, 24eqtr2i 2633 . . . . . . . . . . . . . . . 16 𝒫 dom 𝑂 = 𝒫 𝑋
3938a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝑋)
4037, 39eleqtrd 2690 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑋)
41 elpwi 4117 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
4240, 41syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂𝑦𝑋)
4342adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑦𝑋)
4436, 43sstrd 3578 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧𝑋)
45 simpr 476 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧 ∈ 𝒫 𝑦)
46 elpwg 4116 . . . . . . . . . . . 12 (𝑧 ∈ 𝒫 𝑦 → (𝑧 ∈ 𝒫 𝑋𝑧𝑋))
4745, 46syl 17 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑧 ∈ 𝒫 𝑋𝑧𝑋))
4844, 47mpbird 246 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧 ∈ 𝒫 𝑋)
4911a1i 11 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 0 ∈ ℝ)
50 eqidd 2611 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → 0 = 0)
5150cbvmptv 4678 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝑋 ↦ 0) = (𝑧 ∈ 𝒫 𝑋 ↦ 0)
528, 51eqtri 2632 . . . . . . . . . . 11 𝑂 = (𝑧 ∈ 𝒫 𝑋 ↦ 0)
5352fvmpt2 6200 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 𝑋 ∧ 0 ∈ ℝ) → (𝑂𝑧) = 0)
5448, 49, 53syl2anc 691 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑧) = 0)
558fvmpt2 6200 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝑋 ∧ 0 ∈ ℝ) → (𝑂𝑦) = 0)
5640, 11, 55sylancl 693 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = 0)
5756adantr 480 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑦) = 0)
5854, 57breq12d 4596 . . . . . . . 8 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → ((𝑂𝑧) ≤ (𝑂𝑦) ↔ 0 ≤ 0))
5934, 58mpbird 246 . . . . . . 7 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑧) ≤ (𝑂𝑦))
6059ralrimiva 2949 . . . . . 6 (𝑦 ∈ 𝒫 dom 𝑂 → ∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
6160rgen 2906 . . . . 5 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)
6232, 61pm3.2i 470 . . . 4 (((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
6333a1i 11 . . . . . . 7 (𝑦 ∈ 𝒫 dom 𝑂 → 0 ≤ 0)
6452a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂𝑂 = (𝑧 ∈ 𝒫 𝑋 ↦ 0))
65 eqidd 2611 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 = 𝑦) → 0 = 0)
66 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 dom 𝑂)
6715pweqi 4112 . . . . . . . . . . . . . 14 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋
6867a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6966, 68eleqtrd 2690 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝒫 𝑋)
70 elpwi 4117 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
7169, 70syl 17 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ⊆ 𝒫 𝑋)
72 sspwuni 4547 . . . . . . . . . . 11 (𝑦 ⊆ 𝒫 𝑋 𝑦𝑋)
7371, 72sylib 207 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 𝑦𝑋)
74 vuniex 6852 . . . . . . . . . . . 12 𝑦 ∈ V
7574a1i 11 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 𝑦 ∈ V)
76 elpwg 4116 . . . . . . . . . . 11 ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
7775, 76syl 17 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
7873, 77mpbird 246 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 𝑦 ∈ 𝒫 𝑋)
7911a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → 0 ∈ ℝ)
8064, 65, 78, 79fvmptd 6197 . . . . . . . 8 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂 𝑦) = 0)
8164reseq1d 5316 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦))
82 resmpt 5369 . . . . . . . . . . . 12 (𝑦 ⊆ 𝒫 𝑋 → ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦) = (𝑧𝑦 ↦ 0))
8371, 82syl 17 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 → ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦) = (𝑧𝑦 ↦ 0))
8481, 83eqtrd 2644 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = (𝑧𝑦 ↦ 0))
8584fveq2d 6107 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑂𝑦)) = (Σ^‘(𝑧𝑦 ↦ 0)))
86 nfv 1830 . . . . . . . . . 10 𝑧 𝑦 ∈ 𝒫 dom 𝑂
8786, 66sge0z 39268 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑧𝑦 ↦ 0)) = 0)
8885, 87eqtrd 2644 . . . . . . . 8 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑂𝑦)) = 0)
8980, 88breq12d 4596 . . . . . . 7 (𝑦 ∈ 𝒫 dom 𝑂 → ((𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)) ↔ 0 ≤ 0))
9063, 89mpbird 246 . . . . . 6 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))
9190a1d 25 . . . . 5 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
9291rgen 2906 . . . 4 𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))
9362, 92pm3.2i 470 . . 3 ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
9493a1i 11 . 2 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
958a1i 11 . . . 4 (𝜑𝑂 = (𝑦 ∈ 𝒫 𝑋 ↦ 0))
96 0ome.1 . . . . . 6 (𝜑𝑋𝑉)
97 pwexg 4776 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
9896, 97syl 17 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ V)
99 mptexg 6389 . . . . 5 (𝒫 𝑋 ∈ V → (𝑦 ∈ 𝒫 𝑋 ↦ 0) ∈ V)
10098, 99syl 17 . . . 4 (𝜑 → (𝑦 ∈ 𝒫 𝑋 ↦ 0) ∈ V)
10195, 100eqeltrd 2688 . . 3 (𝜑𝑂 ∈ V)
102 isome 39384 . . 3 (𝑂 ∈ V → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
103101, 102syl 17 . 2 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
10494, 103mpbird 246 1 (𝜑𝑂 ∈ OutMeas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  cdom 7839  cr 9814  0cc0 9815  +∞cpnf 9950  cle 9954  [,]cicc 12049  Σ^csumge0 39255  OutMeascome 39379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256  df-ome 39380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator