Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0enwwlksnge1 Structured version   Visualization version   GIF version

Theorem 0enwwlksnge1 41060
 Description: In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
Assertion
Ref Expression
0enwwlksnge1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalkSN 𝐺) = ∅)

Proof of Theorem 0enwwlksnge1
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11176 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 wwlksn 41040 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 WWalkSN 𝐺) = {𝑤 ∈ (WWalkS‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
31, 2syl 17 . . 3 (𝑁 ∈ ℕ → (𝑁 WWalkSN 𝐺) = {𝑤 ∈ (WWalkS‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
43adantl 481 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalkSN 𝐺) = {𝑤 ∈ (WWalkS‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
5 eqid 2610 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2610 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
75, 6iswwlks 41039 . . . . . . 7 (𝑤 ∈ (WWalkS‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8 nncn 10905 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
9 pncan1 10333 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
108, 9syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
11 id 22 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1210, 11eqeltrd 2688 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℕ)
1312adantl 481 . . . . . . . . . . . . . . 15 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) ∈ ℕ)
1413adantl 481 . . . . . . . . . . . . . 14 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑁 + 1) − 1) ∈ ℕ)
15 oveq1 6556 . . . . . . . . . . . . . . . 16 ((#‘𝑤) = (𝑁 + 1) → ((#‘𝑤) − 1) = ((𝑁 + 1) − 1))
1615eleq1d 2672 . . . . . . . . . . . . . . 15 ((#‘𝑤) = (𝑁 + 1) → (((#‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1716adantr 480 . . . . . . . . . . . . . 14 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (((#‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1814, 17mpbird 246 . . . . . . . . . . . . 13 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((#‘𝑤) − 1) ∈ ℕ)
19 lbfzo0 12375 . . . . . . . . . . . . 13 (0 ∈ (0..^((#‘𝑤) − 1)) ↔ ((#‘𝑤) − 1) ∈ ℕ)
2018, 19sylibr 223 . . . . . . . . . . . 12 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → 0 ∈ (0..^((#‘𝑤) − 1)))
21 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
22 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
23 0p1e1 11009 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
2422, 23syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 + 1) = 1)
2524fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
2621, 25preq12d 4220 . . . . . . . . . . . . . 14 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
2726eleq1d 2672 . . . . . . . . . . . . 13 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2827adantl 481 . . . . . . . . . . . 12 ((((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) ∧ 𝑖 = 0) → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2920, 28rspcdv 3285 . . . . . . . . . . 11 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
30 eleq2 2677 . . . . . . . . . . . . . 14 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ ∅))
31 noel 3878 . . . . . . . . . . . . . . 15 ¬ {(𝑤‘0), (𝑤‘1)} ∈ ∅
3231pm2.21i 115 . . . . . . . . . . . . . 14 ({(𝑤‘0), (𝑤‘1)} ∈ ∅ → ¬ (#‘𝑤) = (𝑁 + 1))
3330, 32syl6bi 242 . . . . . . . . . . . . 13 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (#‘𝑤) = (𝑁 + 1)))
3433adantr 480 . . . . . . . . . . . 12 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (#‘𝑤) = (𝑁 + 1)))
3534adantl 481 . . . . . . . . . . 11 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (#‘𝑤) = (𝑁 + 1)))
3629, 35syld 46 . . . . . . . . . 10 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ¬ (#‘𝑤) = (𝑁 + 1)))
3736com12 32 . . . . . . . . 9 (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (#‘𝑤) = (𝑁 + 1)))
38373ad2ant3 1077 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (#‘𝑤) = (𝑁 + 1)))
3938com12 32 . . . . . . 7 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ¬ (#‘𝑤) = (𝑁 + 1)))
407, 39syl5bi 231 . . . . . 6 (((#‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (𝑤 ∈ (WWalkS‘𝐺) → ¬ (#‘𝑤) = (𝑁 + 1)))
4140expimpd 627 . . . . 5 ((#‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalkS‘𝐺)) → ¬ (#‘𝑤) = (𝑁 + 1)))
42 ax-1 6 . . . . 5 (¬ (#‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalkS‘𝐺)) → ¬ (#‘𝑤) = (𝑁 + 1)))
4341, 42pm2.61i 175 . . . 4 ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalkS‘𝐺)) → ¬ (#‘𝑤) = (𝑁 + 1))
4443ralrimiva 2949 . . 3 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (WWalkS‘𝐺) ¬ (#‘𝑤) = (𝑁 + 1))
45 rabeq0 3911 . . 3 ({𝑤 ∈ (WWalkS‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)} = ∅ ↔ ∀𝑤 ∈ (WWalkS‘𝐺) ¬ (#‘𝑤) = (𝑁 + 1))
4644, 45sylibr 223 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (WWalkS‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)} = ∅)
474, 46eqtrd 2644 1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalkSN 𝐺) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900  ∅c0 3874  {cpr 4127  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  Edgcedga 25792  WWalkScwwlks 41028   WWalkSN cwwlksn 41029 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wwlks 41033  df-wwlksn 41034 This theorem is referenced by:  rusgr0edg  41176
 Copyright terms: Public domain W3C validator