MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dgr Structured version   Visualization version   GIF version

Theorem 0dgr 23805
Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
0dgr (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)

Proof of Theorem 0dgr
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . . . 4 ℂ ⊆ ℂ
2 plyconst 23766 . . . 4 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
31, 2mpan 702 . . 3 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
4 0nn0 11184 . . . 4 0 ∈ ℕ0
54a1i 11 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℕ0)
6 simpl 472 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...0)) → 𝐴 ∈ ℂ)
7 0z 11265 . . . . . . 7 0 ∈ ℤ
8 exp0 12726 . . . . . . . . . 10 (𝑧 ∈ ℂ → (𝑧↑0) = 1)
98oveq2d 6565 . . . . . . . . 9 (𝑧 ∈ ℂ → (𝐴 · (𝑧↑0)) = (𝐴 · 1))
10 mulid1 9916 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
119, 10sylan9eqr 2666 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) = 𝐴)
12 simpl 472 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1311, 12eqeltrd 2688 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) ∈ ℂ)
14 oveq2 6557 . . . . . . . . 9 (𝑘 = 0 → (𝑧𝑘) = (𝑧↑0))
1514oveq2d 6565 . . . . . . . 8 (𝑘 = 0 → (𝐴 · (𝑧𝑘)) = (𝐴 · (𝑧↑0)))
1615fsum1 14320 . . . . . . 7 ((0 ∈ ℤ ∧ (𝐴 · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘)) = (𝐴 · (𝑧↑0)))
177, 13, 16sylancr 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘)) = (𝐴 · (𝑧↑0)))
1817, 11eqtrd 2644 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘)) = 𝐴)
1918mpteq2dva 4672 . . . 4 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ 𝐴))
20 fconstmpt 5085 . . . 4 (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)
2119, 20syl6reqr 2663 . . 3 (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘))))
223, 5, 6, 21dgrle 23803 . 2 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) ≤ 0)
23 dgrcl 23793 . . 3 ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → (deg‘(ℂ × {𝐴})) ∈ ℕ0)
24 nn0le0eq0 11198 . . 3 ((deg‘(ℂ × {𝐴})) ∈ ℕ0 → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0))
253, 23, 243syl 18 . 2 (𝐴 ∈ ℂ → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0))
2622, 25mpbid 221 1 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   · cmul 9820  cle 9954  0cn0 11169  cz 11254  ...cfz 12197  cexp 12722  Σcsu 14264  Polycply 23744  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  0dgrb  23806  coemulc  23815  dgr0  23822  dgrmulc  23831  dgrcolem2  23834  plyremlem  23863  vieta1lem2  23870
  Copyright terms: Public domain W3C validator