MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsqrelqelz Structured version   Unicode version

Theorem zsqrelqelz 13958
Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
zsqrelqelz  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
( sqr `  A
)  e.  ZZ )

Proof of Theorem zsqrelqelz
StepHypRef Expression
1 qdencl 13941 . . . . 5  |-  ( ( sqr `  A )  e.  QQ  ->  (denom `  ( sqr `  A
) )  e.  NN )
21adantl 466 . . . 4  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
(denom `  ( sqr `  A ) )  e.  NN )
32nnred 10452 . . 3  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
(denom `  ( sqr `  A ) )  e.  RR )
4 1red 9516 . . 3  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
1  e.  RR )
52nnnn0d 10751 . . . 4  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
(denom `  ( sqr `  A ) )  e. 
NN0 )
65nn0ge0d 10754 . . 3  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
0  <_  (denom `  ( sqr `  A ) ) )
7 0le1 9978 . . . 4  |-  0  <_  1
87a1i 11 . . 3  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
0  <_  1 )
9 sq1 12081 . . . . 5  |-  ( 1 ^ 2 )  =  1
109a1i 11 . . . 4  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
( 1 ^ 2 )  =  1 )
11 zcn 10766 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
1211sqsqrd 13047 . . . . . . 7  |-  ( A  e.  ZZ  ->  (
( sqr `  A
) ^ 2 )  =  A )
1312adantr 465 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
1413fveq2d 5806 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
(denom `  ( ( sqr `  A ) ^
2 ) )  =  (denom `  A )
)
15 simpl 457 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  ->  A  e.  ZZ )
16 zq 11074 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  QQ )
1716adantr 465 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  ->  A  e.  QQ )
18 qden1elz 13957 . . . . . . 7  |-  ( A  e.  QQ  ->  (
(denom `  A )  =  1  <->  A  e.  ZZ ) )
1917, 18syl 16 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
( (denom `  A
)  =  1  <->  A  e.  ZZ ) )
2015, 19mpbird 232 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
(denom `  A )  =  1 )
2114, 20eqtrd 2495 . . . 4  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
(denom `  ( ( sqr `  A ) ^
2 ) )  =  1 )
22 densq 13956 . . . . 5  |-  ( ( sqr `  A )  e.  QQ  ->  (denom `  ( ( sqr `  A
) ^ 2 ) )  =  ( (denom `  ( sqr `  A
) ) ^ 2 ) )
2322adantl 466 . . . 4  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
(denom `  ( ( sqr `  A ) ^
2 ) )  =  ( (denom `  ( sqr `  A ) ) ^ 2 ) )
2410, 21, 233eqtr2rd 2502 . . 3  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
( (denom `  ( sqr `  A ) ) ^ 2 )  =  ( 1 ^ 2 ) )
253, 4, 6, 8, 24sq11d 12165 . 2  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
(denom `  ( sqr `  A ) )  =  1 )
26 qden1elz 13957 . . 3  |-  ( ( sqr `  A )  e.  QQ  ->  (
(denom `  ( sqr `  A ) )  =  1  <->  ( sqr `  A
)  e.  ZZ ) )
2726adantl 466 . 2  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
( (denom `  ( sqr `  A ) )  =  1  <->  ( sqr `  A )  e.  ZZ ) )
2825, 27mpbid 210 1  |-  ( ( A  e.  ZZ  /\  ( sqr `  A )  e.  QQ )  -> 
( sqr `  A
)  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   0cc0 9397   1c1 9398    <_ cle 9534   NNcn 10437   2c2 10486   ZZcz 10761   QQcq 11068   ^cexp 11986   sqrcsqr 12844  denomcdenom 13934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-sup 7806  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-n0 10695  df-z 10762  df-uz 10977  df-q 11069  df-rp 11107  df-fl 11763  df-mod 11830  df-seq 11928  df-exp 11987  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-dvds 13658  df-gcd 13813  df-numer 13935  df-denom 13936
This theorem is referenced by:  nonsq  13959  dchrisum0flblem2  22901
  Copyright terms: Public domain W3C validator