MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringrng Structured version   Unicode version

Theorem zringrng 17908
Description: The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
Assertion
Ref Expression
zringrng  |-ring  e.  Ring

Proof of Theorem zringrng
StepHypRef Expression
1 zringcrng 17907 . 2  |-ring  e.  CRing
2 crngrng 16677 . 2  |-  (ring  e.  CRing  ->ring  e.  Ring )
31, 2ax-mp 5 1  |-ring  e.  Ring
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1756   Ringcrg 16667   CRingccrg 16668  ℤringzring 17905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-fz 11459  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-0g 14401  df-mnd 15436  df-grp 15566  df-minusg 15567  df-subg 15699  df-cmn 16300  df-mgp 16614  df-ur 16626  df-rng 16669  df-cring 16670  df-subrg 16885  df-cnfld 17841  df-zring 17906
This theorem is referenced by:  zringabl  17909  zringgrp  17910  zringlpirlem1  17925  zringlpirlem3  17927  zringlpir  17928  prmirredlem  17939  prmirred  17941  mulgrhm  17948  zlmsca  17974  zlmlmod  17976  znlidl  17986  znval  17988  znbas  17998  znzrh2  18000  znzrhfo  18002  zndvds  18004  mzpmfp  29109  zlmodzxzlmod  30780  zlmodzxzel  30781  zlmodzxz0  30782  zlmodzxzadd  30784
  Copyright terms: Public domain W3C validator