![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zrhpsgnelbas | Structured version Unicode version |
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
zrhpsgnelbas.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
zrhpsgnelbas.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
zrhpsgnelbas.y |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
zrhpsgnelbas |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhpsgnelbas.p |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | zrhpsgnelbas.s |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | psgnran 16144 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | 3adant1 1006 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | elpri 4008 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | zrhpsgnelbas.y |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | eqid 2454 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | zrh1 18079 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | eqid 2454 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9, 7 | rngidcl 16798 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | eqeltrd 2542 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | 3ad2ant1 1009 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | fveq2 5802 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 13 | eleq1d 2523 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 12, 14 | syl5ibr 221 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | neg1z 10796 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() | |
17 | eqid 2454 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | 6, 17, 7 | zrhmulg 18076 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 16, 18 | mpan2 671 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | rnggrp 16783 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 16 | a1i 11 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 9, 17 | mulgcl 15767 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 20, 21, 10, 22 | syl3anc 1219 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 19, 23 | eqeltrd 2542 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24 | 3ad2ant1 1009 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | fveq2 5802 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 26 | eleq1d 2523 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 25, 27 | syl5ibr 221 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 15, 28 | jaoi 379 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 5, 29 | syl 16 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 4, 30 | mpcom 36 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1955 ax-ext 2432 ax-rep 4514 ax-sep 4524 ax-nul 4532 ax-pow 4581 ax-pr 4642 ax-un 6485 ax-inf2 7962 ax-cnex 9453 ax-resscn 9454 ax-1cn 9455 ax-icn 9456 ax-addcl 9457 ax-addrcl 9458 ax-mulcl 9459 ax-mulrcl 9460 ax-mulcom 9461 ax-addass 9462 ax-mulass 9463 ax-distr 9464 ax-i2m1 9465 ax-1ne0 9466 ax-1rid 9467 ax-rnegex 9468 ax-rrecex 9469 ax-cnre 9470 ax-pre-lttri 9471 ax-pre-lttrn 9472 ax-pre-ltadd 9473 ax-pre-mulgt0 9474 ax-addf 9476 ax-mulf 9477 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-xor 1352 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2266 df-mo 2267 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2604 df-ne 2650 df-nel 2651 df-ral 2804 df-rex 2805 df-reu 2806 df-rmo 2807 df-rab 2808 df-v 3080 df-sbc 3295 df-csb 3399 df-dif 3442 df-un 3444 df-in 3446 df-ss 3453 df-pss 3455 df-nul 3749 df-if 3903 df-pw 3973 df-sn 3989 df-pr 3991 df-tp 3993 df-op 3995 df-ot 3997 df-uni 4203 df-int 4240 df-iun 4284 df-iin 4285 df-br 4404 df-opab 4462 df-mpt 4463 df-tr 4497 df-eprel 4743 df-id 4747 df-po 4752 df-so 4753 df-fr 4790 df-se 4791 df-we 4792 df-ord 4833 df-on 4834 df-lim 4835 df-suc 4836 df-xp 4957 df-rel 4958 df-cnv 4959 df-co 4960 df-dm 4961 df-rn 4962 df-res 4963 df-ima 4964 df-iota 5492 df-fun 5531 df-fn 5532 df-f 5533 df-f1 5534 df-fo 5535 df-f1o 5536 df-fv 5537 df-isom 5538 df-riota 6164 df-ov 6206 df-oprab 6207 df-mpt2 6208 df-om 6590 df-1st 6690 df-2nd 6691 df-tpos 6858 df-recs 6945 df-rdg 6979 df-1o 7033 df-2o 7034 df-oadd 7037 df-er 7214 df-map 7329 df-en 7424 df-dom 7425 df-sdom 7426 df-fin 7427 df-card 8224 df-pnf 9535 df-mnf 9536 df-xr 9537 df-ltxr 9538 df-le 9539 df-sub 9712 df-neg 9713 df-div 10109 df-nn 10438 df-2 10495 df-3 10496 df-4 10497 df-5 10498 df-6 10499 df-7 10500 df-8 10501 df-9 10502 df-10 10503 df-n0 10695 df-z 10762 df-dec 10871 df-uz 10977 df-rp 11107 df-fz 11559 df-fzo 11670 df-seq 11928 df-exp 11987 df-hash 12225 df-word 12351 df-concat 12353 df-s1 12354 df-substr 12355 df-splice 12356 df-reverse 12357 df-s2 12597 df-struct 14298 df-ndx 14299 df-slot 14300 df-base 14301 df-sets 14302 df-ress 14303 df-plusg 14374 df-mulr 14375 df-starv 14376 df-tset 14380 df-ple 14381 df-ds 14383 df-unif 14384 df-0g 14503 df-gsum 14504 df-mre 14647 df-mrc 14648 df-acs 14650 df-mnd 15538 df-mhm 15587 df-submnd 15588 df-grp 15668 df-minusg 15669 df-mulg 15671 df-subg 15801 df-ghm 15868 df-gim 15910 df-oppg 15984 df-symg 16006 df-pmtr 16071 df-psgn 16120 df-cmn 16404 df-mgp 16724 df-ur 16736 df-rng 16780 df-cring 16781 df-rnghom 16939 df-subrg 16996 df-cnfld 17954 df-zring 18019 df-zrh 18070 |
This theorem is referenced by: zrhcopsgnelbas 18160 m2detleib 18579 |
Copyright terms: Public domain | W3C validator |