MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zornn0g Structured version   Unicode version

Theorem zornn0g 8883
Description: Variant of Zorn's lemma zorng 8882 in which  (/), the union of the empty chain, is not required to be an element of  A. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zornn0g  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
Distinct variable group:    x, y, z, A

Proof of Theorem zornn0g
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simp2 996 . 2  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  A  =/=  (/) )
2 simp1 995 . . . 4  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  A  e.  dom  card )
3 snfi 7594 . . . . 5  |-  { (/) }  e.  Fin
4 finnum 8327 . . . . 5  |-  ( {
(/) }  e.  Fin  ->  { (/) }  e.  dom  card )
53, 4ax-mp 5 . . . 4  |-  { (/) }  e.  dom  card
6 unnum 8578 . . . 4  |-  ( ( A  e.  dom  card  /\ 
{ (/) }  e.  dom  card )  ->  ( A  u.  { (/) } )  e. 
dom  card )
72, 5, 6sylancl 662 . . 3  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  -> 
( A  u.  { (/)
} )  e.  dom  card )
8 uncom 3630 . . . . . . . . 9  |-  ( A  u.  { (/) } )  =  ( { (/) }  u.  A )
98sseq2i 3511 . . . . . . . 8  |-  ( w 
C_  ( A  u.  {
(/) } )  <->  w  C_  ( { (/) }  u.  A
) )
10 ssundif 3893 . . . . . . . 8  |-  ( w 
C_  ( { (/) }  u.  A )  <->  ( w  \  { (/) } )  C_  A )
119, 10bitri 249 . . . . . . 7  |-  ( w 
C_  ( A  u.  {
(/) } )  <->  ( w  \  { (/) } )  C_  A )
12 difss 3613 . . . . . . . . 9  |-  ( w 
\  { (/) } ) 
C_  w
13 soss 4804 . . . . . . . . 9  |-  ( ( w  \  { (/) } )  C_  w  ->  ( [ C.]  Or  w  -> [ C.]  Or  (
w  \  { (/) } ) ) )
1412, 13ax-mp 5 . . . . . . . 8  |-  ( [ C.]  Or  w  -> [ C.]  Or  (
w  \  { (/) } ) )
15 ssdif0 3867 . . . . . . . . . . 11  |-  ( w 
C_  { (/) }  <->  ( w  \  { (/) } )  =  (/) )
16 uni0b 4255 . . . . . . . . . . . . 13  |-  ( U. w  =  (/)  <->  w  C_  { (/) } )
1716biimpri 206 . . . . . . . . . . . 12  |-  ( w 
C_  { (/) }  ->  U. w  =  (/) )
1817eleq1d 2510 . . . . . . . . . . 11  |-  ( w 
C_  { (/) }  ->  ( U. w  e.  ( A  u.  { (/) } )  <->  (/)  e.  ( A  u.  { (/) } ) ) )
1915, 18sylbir 213 . . . . . . . . . 10  |-  ( ( w  \  { (/) } )  =  (/)  ->  ( U. w  e.  ( A  u.  { (/) } )  <->  (/) 
e.  ( A  u.  {
(/) } ) ) )
2019imbi2d 316 . . . . . . . . 9  |-  ( ( w  \  { (/) } )  =  (/)  ->  (
( A. z ( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) )  <->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  (/)  e.  ( A  u.  { (/) } ) ) ) )
21 vex 3096 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
22 difexg 4581 . . . . . . . . . . . . . . 15  |-  ( w  e.  _V  ->  (
w  \  { (/) } )  e.  _V )
2321, 22ax-mp 5 . . . . . . . . . . . . . 14  |-  ( w 
\  { (/) } )  e.  _V
24 sseq1 3507 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  \  { (/) } )  -> 
( z  C_  A  <->  ( w  \  { (/) } )  C_  A )
)
25 neeq1 2722 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  \  { (/) } )  -> 
( z  =/=  (/)  <->  ( w  \  { (/) } )  =/=  (/) ) )
26 soeq2 4806 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  \  { (/) } )  -> 
( [ C.]  Or  z  <-> [ C.]  Or  (
w  \  { (/) } ) ) )
2724, 25, 263anbi123d 1298 . . . . . . . . . . . . . . 15  |-  ( z  =  ( w  \  { (/) } )  -> 
( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  <->  ( ( w 
\  { (/) } ) 
C_  A  /\  (
w  \  { (/) } )  =/=  (/)  /\ [ C.]  Or  (
w  \  { (/) } ) ) ) )
28 unieq 4238 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  \  { (/) } )  ->  U. z  =  U. ( w  \  { (/) } ) )
2928eleq1d 2510 . . . . . . . . . . . . . . 15  |-  ( z  =  ( w  \  { (/) } )  -> 
( U. z  e.  A  <->  U. ( w  \  { (/) } )  e.  A ) )
3027, 29imbi12d 320 . . . . . . . . . . . . . 14  |-  ( z  =  ( w  \  { (/) } )  -> 
( ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  <->  ( (
( w  \  { (/)
} )  C_  A  /\  ( w  \  { (/)
} )  =/=  (/)  /\ [ C.]  Or  (
w  \  { (/) } ) )  ->  U. (
w  \  { (/) } )  e.  A ) ) )
3123, 30spcv 3184 . . . . . . . . . . . . 13  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  (
( ( w  \  { (/) } )  C_  A  /\  ( w  \  { (/) } )  =/=  (/)  /\ [ C.]  Or  (
w  \  { (/) } ) )  ->  U. (
w  \  { (/) } )  e.  A ) )
3231com12 31 . . . . . . . . . . . 12  |-  ( ( ( w  \  { (/)
} )  C_  A  /\  ( w  \  { (/)
} )  =/=  (/)  /\ [ C.]  Or  (
w  \  { (/) } ) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. (
w  \  { (/) } )  e.  A ) )
33323expa 1195 . . . . . . . . . . 11  |-  ( ( ( ( w  \  { (/) } )  C_  A  /\  ( w  \  { (/) } )  =/=  (/) )  /\ [ C.]  Or  (
w  \  { (/) } ) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. (
w  \  { (/) } )  e.  A ) )
3433an32s 802 . . . . . . . . . 10  |-  ( ( ( ( w  \  { (/) } )  C_  A  /\ [ C.]  Or  (
w  \  { (/) } ) )  /\  ( w 
\  { (/) } )  =/=  (/) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. (
w  \  { (/) } )  e.  A ) )
35 unidif0 4606 . . . . . . . . . . . 12  |-  U. (
w  \  { (/) } )  =  U. w
3635eleq1i 2518 . . . . . . . . . . 11  |-  ( U. ( w  \  { (/) } )  e.  A  <->  U. w  e.  A )
37 elun1 3653 . . . . . . . . . . 11  |-  ( U. w  e.  A  ->  U. w  e.  ( A  u.  { (/) } ) )
3836, 37sylbi 195 . . . . . . . . . 10  |-  ( U. ( w  \  { (/) } )  e.  A  ->  U. w  e.  ( A  u.  { (/) } ) )
3934, 38syl6 33 . . . . . . . . 9  |-  ( ( ( ( w  \  { (/) } )  C_  A  /\ [ C.]  Or  (
w  \  { (/) } ) )  /\  ( w 
\  { (/) } )  =/=  (/) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
40 0ex 4563 . . . . . . . . . . . 12  |-  (/)  e.  _V
4140snid 4038 . . . . . . . . . . 11  |-  (/)  e.  { (/)
}
42 elun2 3654 . . . . . . . . . . 11  |-  ( (/)  e.  { (/) }  ->  (/)  e.  ( A  u.  { (/) } ) )
4341, 42ax-mp 5 . . . . . . . . . 10  |-  (/)  e.  ( A  u.  { (/) } )
4443a1ii 27 . . . . . . . . 9  |-  ( ( ( w  \  { (/)
} )  C_  A  /\ [ C.]  Or  ( w 
\  { (/) } ) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  (/)  e.  ( A  u.  { (/) } ) ) )
4520, 39, 44pm2.61ne 2756 . . . . . . . 8  |-  ( ( ( w  \  { (/)
} )  C_  A  /\ [ C.]  Or  ( w 
\  { (/) } ) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
4614, 45sylan2 474 . . . . . . 7  |-  ( ( ( w  \  { (/)
} )  C_  A  /\ [ C.]  Or  w )  ->  ( A. z
( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
4711, 46sylanb 472 . . . . . 6  |-  ( ( w  C_  ( A  u.  { (/) } )  /\ [ C.] 
Or  w )  -> 
( A. z ( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
4847com12 31 . . . . 5  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  (
( w  C_  ( A  u.  { (/) } )  /\ [ C.]  Or  w
)  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
4948alrimiv 1704 . . . 4  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  A. w
( ( w  C_  ( A  u.  { (/) } )  /\ [ C.]  Or  w
)  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
50493ad2ant3 1018 . . 3  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  A. w ( ( w 
C_  ( A  u.  {
(/) } )  /\ [ C.]  Or  w
)  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
51 zorng 8882 . . 3  |-  ( ( ( A  u.  { (/)
} )  e.  dom  card  /\  A. w ( ( w  C_  ( A  u.  { (/) } )  /\ [ C.] 
Or  w )  ->  U. w  e.  ( A  u.  { (/) } ) ) )  ->  E. x  e.  ( A  u.  { (/)
} ) A. y  e.  ( A  u.  { (/)
} )  -.  x  C.  y )
527, 50, 51syl2anc 661 . 2  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  E. x  e.  ( A  u.  { (/) } ) A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y )
53 ssun1 3649 . . . . 5  |-  A  C_  ( A  u.  { (/) } )
54 ssralv 3546 . . . . 5  |-  ( A 
C_  ( A  u.  {
(/) } )  ->  ( A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y  ->  A. y  e.  A  -.  x  C.  y ) )
5553, 54ax-mp 5 . . . 4  |-  ( A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y  ->  A. y  e.  A  -.  x  C.  y )
5655reximi 2909 . . 3  |-  ( E. x  e.  ( A  u.  { (/) } ) A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y  ->  E. x  e.  ( A  u.  { (/) } ) A. y  e.  A  -.  x  C.  y )
57 rexun 3666 . . . 4  |-  ( E. x  e.  ( A  u.  { (/) } ) A. y  e.  A  -.  x  C.  y  <->  ( E. x  e.  A  A. y  e.  A  -.  x  C.  y  \/  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y ) )
58 simpr 461 . . . . 5  |-  ( ( A  =/=  (/)  /\  E. x  e.  A  A. y  e.  A  -.  x  C.  y )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
59 simpr 461 . . . . . 6  |-  ( ( A  =/=  (/)  /\  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )  ->  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )
60 psseq1 3573 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( x 
C.  y  <->  (/)  C.  y
) )
61 0pss 3846 . . . . . . . . . . . . 13  |-  ( (/)  C.  y  <->  y  =/=  (/) )
6260, 61syl6bb 261 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( x 
C.  y  <->  y  =/=  (/) ) )
6362notbid 294 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( -.  x  C.  y  <->  -.  y  =/=  (/) ) )
64 nne 2642 . . . . . . . . . . 11  |-  ( -.  y  =/=  (/)  <->  y  =  (/) )
6563, 64syl6bb 261 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( -.  x  C.  y  <->  y  =  (/) ) )
6665ralbidv 2880 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A. y  e.  A  -.  x  C.  y  <->  A. y  e.  A  y  =  (/) ) )
6740, 66rexsn 4050 . . . . . . . 8  |-  ( E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y  <->  A. y  e.  A  y  =  (/) )
68 eqsn 4172 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ( A  =  { (/) }  <->  A. y  e.  A  y  =  (/) ) )
6968biimpar 485 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  y  =  (/) )  ->  A  =  { (/) } )
7067, 69sylan2b 475 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )  ->  A  =  { (/) } )
7170rexeqdv 3045 . . . . . 6  |-  ( ( A  =/=  (/)  /\  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )  -> 
( E. x  e.  A  A. y  e.  A  -.  x  C.  y 
<->  E. x  e.  { (/)
} A. y  e.  A  -.  x  C.  y ) )
7259, 71mpbird 232 . . . . 5  |-  ( ( A  =/=  (/)  /\  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
7358, 72jaodan 783 . . . 4  |-  ( ( A  =/=  (/)  /\  ( E. x  e.  A  A. y  e.  A  -.  x  C.  y  \/ 
E. x  e.  { (/)
} A. y  e.  A  -.  x  C.  y ) )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
7457, 73sylan2b 475 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  ( A  u.  { (/) } ) A. y  e.  A  -.  x  C.  y )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
7556, 74sylan2 474 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  ( A  u.  { (/) } ) A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
761, 52, 75syl2anc 661 1  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 972   A.wal 1379    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791   E.wrex 2792   _Vcvv 3093    \ cdif 3455    u. cun 3456    C_ wss 3458    C. wpss 3459   (/)c0 3767   {csn 4010   U.cuni 4230    Or wor 4785   dom cdm 4985   [ C.] crpss 6560   Fincfn 7514   cardccrd 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-rpss 6561  df-om 6682  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-en 7515  df-dom 7516  df-fin 7518  df-card 8318  df-cda 8546
This theorem is referenced by:  zornn0  8886  pgpfac1lem5  16998  lbsextlem4  17675  filssufilg  20278
  Copyright terms: Public domain W3C validator