MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zornn0g Structured version   Unicode version

Theorem zornn0g 8670
Description: Variant of Zorn's lemma zorng 8669 in which  (/), the union of the empty chain, is not required to be an element of  A. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zornn0g  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
Distinct variable group:    x, y, z, A

Proof of Theorem zornn0g
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simp2 984 . 2  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  A  =/=  (/) )
2 simp1 983 . . . 4  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  A  e.  dom  card )
3 snfi 7386 . . . . 5  |-  { (/) }  e.  Fin
4 finnum 8114 . . . . 5  |-  ( {
(/) }  e.  Fin  ->  { (/) }  e.  dom  card )
53, 4ax-mp 5 . . . 4  |-  { (/) }  e.  dom  card
6 unnum 8365 . . . 4  |-  ( ( A  e.  dom  card  /\ 
{ (/) }  e.  dom  card )  ->  ( A  u.  { (/) } )  e. 
dom  card )
72, 5, 6sylancl 657 . . 3  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  -> 
( A  u.  { (/)
} )  e.  dom  card )
8 uncom 3497 . . . . . . . . 9  |-  ( A  u.  { (/) } )  =  ( { (/) }  u.  A )
98sseq2i 3378 . . . . . . . 8  |-  ( w 
C_  ( A  u.  {
(/) } )  <->  w  C_  ( { (/) }  u.  A
) )
10 ssundif 3759 . . . . . . . 8  |-  ( w 
C_  ( { (/) }  u.  A )  <->  ( w  \  { (/) } )  C_  A )
119, 10bitri 249 . . . . . . 7  |-  ( w 
C_  ( A  u.  {
(/) } )  <->  ( w  \  { (/) } )  C_  A )
12 difss 3480 . . . . . . . . 9  |-  ( w 
\  { (/) } ) 
C_  w
13 soss 4655 . . . . . . . . 9  |-  ( ( w  \  { (/) } )  C_  w  ->  ( [
C.]  Or  w  -> [ C.] 
Or  ( w  \  { (/) } ) ) )
1412, 13ax-mp 5 . . . . . . . 8  |-  ( [ C.]  Or  w  -> [ C.]  Or  ( w  \  { (/) } ) )
15 ssdif0 3734 . . . . . . . . . . 11  |-  ( w 
C_  { (/) }  <->  ( w  \  { (/) } )  =  (/) )
16 uni0b 4113 . . . . . . . . . . . . 13  |-  ( U. w  =  (/)  <->  w  C_  { (/) } )
1716biimpri 206 . . . . . . . . . . . 12  |-  ( w 
C_  { (/) }  ->  U. w  =  (/) )
1817eleq1d 2507 . . . . . . . . . . 11  |-  ( w 
C_  { (/) }  ->  ( U. w  e.  ( A  u.  { (/) } )  <->  (/)  e.  ( A  u.  { (/) } ) ) )
1915, 18sylbir 213 . . . . . . . . . 10  |-  ( ( w  \  { (/) } )  =  (/)  ->  ( U. w  e.  ( A  u.  { (/) } )  <->  (/) 
e.  ( A  u.  {
(/) } ) ) )
2019imbi2d 316 . . . . . . . . 9  |-  ( ( w  \  { (/) } )  =  (/)  ->  (
( A. z ( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z )  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) )  <->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  (/)  e.  ( A  u.  { (/) } ) ) ) )
21 vex 2973 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
22 difexg 4437 . . . . . . . . . . . . . . 15  |-  ( w  e.  _V  ->  (
w  \  { (/) } )  e.  _V )
2321, 22ax-mp 5 . . . . . . . . . . . . . 14  |-  ( w 
\  { (/) } )  e.  _V
24 sseq1 3374 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  \  { (/) } )  -> 
( z  C_  A  <->  ( w  \  { (/) } )  C_  A )
)
25 neeq1 2614 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  \  { (/) } )  -> 
( z  =/=  (/)  <->  ( w  \  { (/) } )  =/=  (/) ) )
26 soeq2 4657 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  \  { (/) } )  -> 
( [ C.]  Or  z  <-> [ C.] 
Or  ( w  \  { (/) } ) ) )
2724, 25, 263anbi123d 1284 . . . . . . . . . . . . . . 15  |-  ( z  =  ( w  \  { (/) } )  -> 
( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z )  <->  ( (
w  \  { (/) } ) 
C_  A  /\  (
w  \  { (/) } )  =/=  (/)  /\ [ C.]  Or  (
w  \  { (/) } ) ) ) )
28 unieq 4096 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  \  { (/) } )  ->  U. z  =  U. ( w  \  { (/) } ) )
2928eleq1d 2507 . . . . . . . . . . . . . . 15  |-  ( z  =  ( w  \  { (/) } )  -> 
( U. z  e.  A  <->  U. ( w  \  { (/) } )  e.  A ) )
3027, 29imbi12d 320 . . . . . . . . . . . . . 14  |-  ( z  =  ( w  \  { (/) } )  -> 
( ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  <->  ( (
( w  \  { (/)
} )  C_  A  /\  ( w  \  { (/)
} )  =/=  (/)  /\ [ C.]  Or  ( w  \  { (/)
} ) )  ->  U. ( w  \  { (/)
} )  e.  A
) ) )
3123, 30spcv 3060 . . . . . . . . . . . . 13  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  (
( ( w  \  { (/) } )  C_  A  /\  ( w  \  { (/) } )  =/=  (/)  /\ [ C.]  Or  (
w  \  { (/) } ) )  ->  U. (
w  \  { (/) } )  e.  A ) )
3231com12 31 . . . . . . . . . . . 12  |-  ( ( ( w  \  { (/)
} )  C_  A  /\  ( w  \  { (/)
} )  =/=  (/)  /\ [ C.]  Or  ( w  \  { (/)
} ) )  -> 
( A. z ( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z )  ->  U. z  e.  A )  ->  U. (
w  \  { (/) } )  e.  A ) )
33323expa 1182 . . . . . . . . . . 11  |-  ( ( ( ( w  \  { (/) } )  C_  A  /\  ( w  \  { (/) } )  =/=  (/) )  /\ [ C.]  Or  ( w  \  { (/) } ) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. (
w  \  { (/) } )  e.  A ) )
3433an32s 797 . . . . . . . . . 10  |-  ( ( ( ( w  \  { (/) } )  C_  A  /\ [ C.]  Or  (
w  \  { (/) } ) )  /\  ( w 
\  { (/) } )  =/=  (/) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. (
w  \  { (/) } )  e.  A ) )
35 unidif0 4462 . . . . . . . . . . . 12  |-  U. (
w  \  { (/) } )  =  U. w
3635eleq1i 2504 . . . . . . . . . . 11  |-  ( U. ( w  \  { (/) } )  e.  A  <->  U. w  e.  A )
37 elun1 3520 . . . . . . . . . . 11  |-  ( U. w  e.  A  ->  U. w  e.  ( A  u.  { (/) } ) )
3836, 37sylbi 195 . . . . . . . . . 10  |-  ( U. ( w  \  { (/) } )  e.  A  ->  U. w  e.  ( A  u.  { (/) } ) )
3934, 38syl6 33 . . . . . . . . 9  |-  ( ( ( ( w  \  { (/) } )  C_  A  /\ [ C.]  Or  (
w  \  { (/) } ) )  /\  ( w 
\  { (/) } )  =/=  (/) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
40 0ex 4419 . . . . . . . . . . . 12  |-  (/)  e.  _V
4140snid 3902 . . . . . . . . . . 11  |-  (/)  e.  { (/)
}
42 elun2 3521 . . . . . . . . . . 11  |-  ( (/)  e.  { (/) }  ->  (/)  e.  ( A  u.  { (/) } ) )
4341, 42ax-mp 5 . . . . . . . . . 10  |-  (/)  e.  ( A  u.  { (/) } )
4443a1ii 27 . . . . . . . . 9  |-  ( ( ( w  \  { (/)
} )  C_  A  /\ [ C.]  Or  ( w 
\  { (/) } ) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  (/)  e.  ( A  u.  { (/) } ) ) )
4520, 39, 44pm2.61ne 2684 . . . . . . . 8  |-  ( ( ( w  \  { (/)
} )  C_  A  /\ [ C.]  Or  ( w 
\  { (/) } ) )  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
4614, 45sylan2 471 . . . . . . 7  |-  ( ( ( w  \  { (/)
} )  C_  A  /\ [ C.]  Or  w )  ->  ( A. z
( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z )  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
4711, 46sylanb 469 . . . . . 6  |-  ( ( w  C_  ( A  u.  { (/) } )  /\ [ C.] 
Or  w )  -> 
( A. z ( ( z  C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z )  ->  U. z  e.  A )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
4847com12 31 . . . . 5  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  (
( w  C_  ( A  u.  { (/) } )  /\ [ C.]  Or  w
)  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
4948alrimiv 1690 . . . 4  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A )  ->  A. w
( ( w  C_  ( A  u.  { (/) } )  /\ [ C.]  Or  w )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
50493ad2ant3 1006 . . 3  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  A. w ( ( w 
C_  ( A  u.  {
(/) } )  /\ [ C.]  Or  w )  ->  U. w  e.  ( A  u.  { (/)
} ) ) )
51 zorng 8669 . . 3  |-  ( ( ( A  u.  { (/)
} )  e.  dom  card  /\  A. w ( ( w  C_  ( A  u.  { (/) } )  /\ [ C.] 
Or  w )  ->  U. w  e.  ( A  u.  { (/) } ) ) )  ->  E. x  e.  ( A  u.  { (/)
} ) A. y  e.  ( A  u.  { (/)
} )  -.  x  C.  y )
527, 50, 51syl2anc 656 . 2  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  E. x  e.  ( A  u.  { (/) } ) A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y )
53 ssun1 3516 . . . . 5  |-  A  C_  ( A  u.  { (/) } )
54 ssralv 3413 . . . . 5  |-  ( A 
C_  ( A  u.  {
(/) } )  ->  ( A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y  ->  A. y  e.  A  -.  x  C.  y ) )
5553, 54ax-mp 5 . . . 4  |-  ( A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y  ->  A. y  e.  A  -.  x  C.  y )
5655reximi 2821 . . 3  |-  ( E. x  e.  ( A  u.  { (/) } ) A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y  ->  E. x  e.  ( A  u.  { (/) } ) A. y  e.  A  -.  x  C.  y )
57 rexun 3533 . . . 4  |-  ( E. x  e.  ( A  u.  { (/) } ) A. y  e.  A  -.  x  C.  y  <->  ( E. x  e.  A  A. y  e.  A  -.  x  C.  y  \/  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y ) )
58 simpr 458 . . . . 5  |-  ( ( A  =/=  (/)  /\  E. x  e.  A  A. y  e.  A  -.  x  C.  y )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
59 simpr 458 . . . . . 6  |-  ( ( A  =/=  (/)  /\  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )  ->  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )
60 psseq1 3440 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( x 
C.  y  <->  (/)  C.  y
) )
61 0pss 3713 . . . . . . . . . . . . 13  |-  ( (/)  C.  y  <->  y  =/=  (/) )
6260, 61syl6bb 261 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( x 
C.  y  <->  y  =/=  (/) ) )
6362notbid 294 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( -.  x  C.  y  <->  -.  y  =/=  (/) ) )
64 nne 2610 . . . . . . . . . . 11  |-  ( -.  y  =/=  (/)  <->  y  =  (/) )
6563, 64syl6bb 261 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( -.  x  C.  y  <->  y  =  (/) ) )
6665ralbidv 2733 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A. y  e.  A  -.  x  C.  y  <->  A. y  e.  A  y  =  (/) ) )
6740, 66rexsn 3913 . . . . . . . 8  |-  ( E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y  <->  A. y  e.  A  y  =  (/) )
68 eqsn 4031 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ( A  =  { (/) }  <->  A. y  e.  A  y  =  (/) ) )
6968biimpar 482 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  y  =  (/) )  ->  A  =  { (/) } )
7067, 69sylan2b 472 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )  ->  A  =  { (/) } )
7170rexeqdv 2922 . . . . . 6  |-  ( ( A  =/=  (/)  /\  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )  -> 
( E. x  e.  A  A. y  e.  A  -.  x  C.  y 
<->  E. x  e.  { (/)
} A. y  e.  A  -.  x  C.  y ) )
7259, 71mpbird 232 . . . . 5  |-  ( ( A  =/=  (/)  /\  E. x  e.  { (/) } A. y  e.  A  -.  x  C.  y )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
7358, 72jaodan 778 . . . 4  |-  ( ( A  =/=  (/)  /\  ( E. x  e.  A  A. y  e.  A  -.  x  C.  y  \/ 
E. x  e.  { (/)
} A. y  e.  A  -.  x  C.  y ) )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
7457, 73sylan2b 472 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  ( A  u.  { (/) } ) A. y  e.  A  -.  x  C.  y )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
7556, 74sylan2 471 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  ( A  u.  { (/) } ) A. y  e.  ( A  u.  { (/) } )  -.  x  C.  y )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
761, 52, 75syl2anc 656 1  |-  ( ( A  e.  dom  card  /\  A  =/=  (/)  /\  A. z ( ( z 
C_  A  /\  z  =/=  (/)  /\ [ C.]  Or  z
)  ->  U. z  e.  A ) )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960   A.wal 1362    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970    \ cdif 3322    u. cun 3323    C_ wss 3325    C. wpss 3326   (/)c0 3634   {csn 3874   U.cuni 4088    Or wor 4636   dom cdm 4836   [ C.] crpss 6358   Fincfn 7306   cardccrd 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-rpss 6359  df-om 6476  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-fin 7310  df-card 8105  df-cda 8333
This theorem is referenced by:  zornn0  8673  pgpfac1lem5  16570  lbsextlem4  17220  filssufilg  19443
  Copyright terms: Public domain W3C validator