MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem7 Structured version   Unicode version

Theorem zorn2lem7 8795
Description: Lemma for zorn2 8799. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u w v ) ) )
zorn2lem.4  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
zorn2lem.5  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
zorn2lem.7  |-  H  =  { z  e.  A  |  A. g  e.  ( F " y ) g R z }
Assertion
Ref Expression
zorn2lem7  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b )
Distinct variable groups:    a, b,
f, g, r, s, u, v, w, x, y, z, A    D, a, b, f, u, v, y    F, a, b, f, g, r, s, u, v, x, y, z    R, a, b, f, g, r, s, u, v, w, x, y, z   
v, C    x, H, u, v, f, s, r, a, b
Allowed substitution hints:    C( x, y, z, w, u, f, g, s, r, a, b)    D( x, z, w, g, s, r)    F( w)    H( y, z, w, g)

Proof of Theorem zorn2lem7
StepHypRef Expression
1 ween 8329 . . 3  |-  ( A  e.  dom  card  <->  E. w  w  We  A )
2 zorn2lem.3 . . . . . . . . 9  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u w v ) ) )
3 zorn2lem.4 . . . . . . . . 9  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
4 zorn2lem.5 . . . . . . . . 9  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
52, 3, 4zorn2lem4 8792 . . . . . . . 8  |-  ( ( R  Po  A  /\  w  We  A )  ->  E. x  e.  On  D  =  (/) )
6 imaeq2 5245 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( F " x )  =  ( F " y
) )
76raleqdv 2985 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( A. g  e.  ( F " x ) g R z  <->  A. g  e.  ( F " y
) g R z ) )
87rabbidv 3026 . . . . . . . . . . . 12  |-  ( x  =  y  ->  { z  e.  A  |  A. g  e.  ( F " x ) g R z }  =  {
z  e.  A  |  A. g  e.  ( F " y ) g R z } )
9 zorn2lem.7 . . . . . . . . . . . 12  |-  H  =  { z  e.  A  |  A. g  e.  ( F " y ) g R z }
108, 4, 93eqtr4g 2448 . . . . . . . . . . 11  |-  ( x  =  y  ->  D  =  H )
1110eqeq1d 2384 . . . . . . . . . 10  |-  ( x  =  y  ->  ( D  =  (/)  <->  H  =  (/) ) )
1211onminex 6541 . . . . . . . . 9  |-  ( E. x  e.  On  D  =  (/)  ->  E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  -.  H  =  (/) ) )
13 df-ne 2579 . . . . . . . . . . . 12  |-  ( H  =/=  (/)  <->  -.  H  =  (/) )
1413ralbii 2813 . . . . . . . . . . 11  |-  ( A. y  e.  x  H  =/=  (/)  <->  A. y  e.  x  -.  H  =  (/) )
1514anbi2i 692 . . . . . . . . . 10  |-  ( ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) )  <->  ( D  =  (/)  /\  A. y  e.  x  -.  H  =  (/) ) )
1615rexbii 2884 . . . . . . . . 9  |-  ( E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) )  <->  E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  -.  H  =  (/) ) )
1712, 16sylibr 212 . . . . . . . 8  |-  ( E. x  e.  On  D  =  (/)  ->  E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) ) )
182, 3, 4, 9zorn2lem5 8793 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( F " x
)  C_  A )
1918a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  ( F " x )  C_  A ) )
202, 3, 4, 9zorn2lem6 8794 . . . . . . . . . . . . . . . . . . 19  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  R  Or  ( F " x
) ) )
2119, 20jcad 531 . . . . . . . . . . . . . . . . . 18  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  (
( F " x
)  C_  A  /\  R  Or  ( F " x ) ) ) )
222tfr1 6984 . . . . . . . . . . . . . . . . . . . 20  |-  F  Fn  On
23 fnfun 5586 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  Fn  On  ->  Fun  F )
24 vex 3037 . . . . . . . . . . . . . . . . . . . . 21  |-  x  e. 
_V
2524funimaex 5574 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
F  ->  ( F " x )  e.  _V )
2622, 23, 25mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  ( F
" x )  e. 
_V
27 sseq1 3438 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( F "
x )  ->  (
s  C_  A  <->  ( F " x )  C_  A
) )
28 soeq2 4734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( F "
x )  ->  ( R  Or  s  <->  R  Or  ( F " x ) ) )
2927, 28anbi12d 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  =  ( F "
x )  ->  (
( s  C_  A  /\  R  Or  s
)  <->  ( ( F
" x )  C_  A  /\  R  Or  ( F " x ) ) ) )
30 raleq 2979 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( F "
x )  ->  ( A. r  e.  s 
( r R a  \/  r  =  a )  <->  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) )
3130rexbidv 2893 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  =  ( F "
x )  ->  ( E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a )  <->  E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) )
3229, 31imbi12d 318 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  ( F "
x )  ->  (
( ( s  C_  A  /\  R  Or  s
)  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) )  <-> 
( ( ( F
" x )  C_  A  /\  R  Or  ( F " x ) )  ->  E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) ) )
3326, 32spcv 3125 . . . . . . . . . . . . . . . . . 18  |-  ( A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) )  ->  ( ( ( F " x ) 
C_  A  /\  R  Or  ( F " x
) )  ->  E. a  e.  A  A. r  e.  ( F " x
) ( r R a  \/  r  =  a ) ) )
3421, 33sylan9 655 . . . . . . . . . . . . . . . . 17  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) )
3534adantld 465 . . . . . . . . . . . . . . . 16  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( ( D  =  (/)  /\  (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  ->  E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) )
3635imp 427 . . . . . . . . . . . . . . 15  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  ( D  =  (/)  /\  (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  E. a  e.  A  A. r  e.  ( F " x
) ( r R a  \/  r  =  a ) )
37 noel 3715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  -.  b  e.  (/)
3818sseld 3416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( r  e.  ( F " x )  ->  r  e.  A
) )
39 3anass 975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( ( r  e.  A  /\  a  e.  A  /\  b  e.  A )  <->  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )
40 potr 4726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( ( R  Po  A  /\  ( r  e.  A  /\  a  e.  A  /\  b  e.  A
) )  ->  (
( r R a  /\  a R b )  ->  r R
b ) )
4139, 40sylan2br 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  -> 
( ( r R a  /\  a R b )  ->  r R b ) )
4241expcomd 436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  -> 
( a R b  ->  ( r R a  ->  r R
b ) ) )
4342imp 427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  a R b )  -> 
( r R a  ->  r R b ) )
44 breq1 4370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( r  =  a  ->  (
r R b  <->  a R
b ) )
4544biimprcd 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( a R b  ->  (
r  =  a  -> 
r R b ) )
4645adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  a R b )  -> 
( r  =  a  ->  r R b ) )
4743, 46jaod 378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  a R b )  -> 
( ( r R a  \/  r  =  a )  ->  r R b ) )
4847exp42 609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( R  Po  A  ->  (
r  e.  A  -> 
( ( a  e.  A  /\  b  e.  A )  ->  (
a R b  -> 
( ( r R a  \/  r  =  a )  ->  r R b ) ) ) ) )
4938, 48sylan9r 656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( r  e.  ( F " x )  ->  ( ( a  e.  A  /\  b  e.  A )  ->  (
a R b  -> 
( ( r R a  \/  r  =  a )  ->  r R b ) ) ) ) )
5049com24 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( a R b  ->  ( ( a  e.  A  /\  b  e.  A )  ->  (
r  e.  ( F
" x )  -> 
( ( r R a  \/  r  =  a )  ->  r R b ) ) ) ) )
5150com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  (
a R b  -> 
( r  e.  ( F " x )  ->  ( ( r R a  \/  r  =  a )  -> 
r R b ) ) ) ) )
5251imp31 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  /\  a R b )  -> 
( r  e.  ( F " x )  ->  ( ( r R a  \/  r  =  a )  -> 
r R b ) ) )
5352a2d 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  /\  a R b )  -> 
( ( r  e.  ( F " x
)  ->  ( r R a  \/  r  =  a ) )  ->  ( r  e.  ( F " x
)  ->  r R
b ) ) )
5453ralimdv2 2789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  /\  a R b )  -> 
( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  A. r  e.  ( F " x
) r R b ) )
55 breq1 4370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( r  =  g  ->  (
r R b  <->  g R
b ) )
5655cbvralv 3009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( A. r  e.  ( F " x ) r R b  <->  A. g  e.  ( F " x ) g R b )
57 breq2 4371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( z  =  b  ->  (
g R z  <->  g R
b ) )
5857ralbidv 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( z  =  b  ->  ( A. g  e.  ( F " x ) g R z  <->  A. g  e.  ( F " x
) g R b ) )
5958elrab 3182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( b  e.  { z  e.  A  |  A. g  e.  ( F " x
) g R z }  <->  ( b  e.  A  /\  A. g  e.  ( F " x
) g R b ) )
604eqeq1i 2389 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( D  =  (/)  <->  { z  e.  A  |  A. g  e.  ( F " x ) g R z }  =  (/) )
61 eleq2 2455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( { z  e.  A  |  A. g  e.  ( F " x ) g R z }  =  (/) 
->  ( b  e.  {
z  e.  A  |  A. g  e.  ( F " x ) g R z }  <->  b  e.  (/) ) )
6260, 61sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( D  =  (/)  ->  ( b  e.  { z  e.  A  |  A. g  e.  ( F " x
) g R z }  <->  b  e.  (/) ) )
6359, 62syl5bbr 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( D  =  (/)  ->  ( ( b  e.  A  /\  A. g  e.  ( F
" x ) g R b )  <->  b  e.  (/) ) )
6463biimpd 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( D  =  (/)  ->  ( ( b  e.  A  /\  A. g  e.  ( F
" x ) g R b )  -> 
b  e.  (/) ) )
6564expdimp 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  ( A. g  e.  ( F " x ) g R b  ->  b  e.  (/) ) )
6656, 65syl5bi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  ( A. r  e.  ( F " x ) r R b  ->  b  e.  (/) ) )
6754, 66sylan9r 656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( D  =  (/)  /\  b  e.  A )  /\  ( ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  /\  a R b ) )  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  b  e.  (/) ) )
6867exp32 603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  ->  (
a R b  -> 
( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  b  e.  (/) ) ) ) )
6968com34 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  ( a R b  ->  b  e.  (/) ) ) ) )
7069imp31 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( D  =  (/)  /\  b  e.  A
)  /\  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  A. r  e.  ( F
" x ) ( r R a  \/  r  =  a ) )  ->  ( a R b  ->  b  e.  (/) ) )
7137, 70mtoi 178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( D  =  (/)  /\  b  e.  A
)  /\  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  A. r  e.  ( F
" x ) ( r R a  \/  r  =  a ) )  ->  -.  a R b )
7271exp42 609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  -.  a R
b ) ) ) )
7372exp4a 604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( a  e.  A  ->  ( b  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) )
7473com34 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( b  e.  A  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) )
7574ex 432 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( D  =  (/)  ->  ( b  e.  A  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( b  e.  A  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) ) )
7675com4r 86 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( b  e.  A  ->  ( D  =  (/)  ->  (
b  e.  A  -> 
( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( a  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) ) )
7776pm2.43a 49 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  e.  A  ->  ( D  =  (/)  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( a  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) )
7877impd 429 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  e.  A  ->  (
( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) )
7978com4l 84 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  -> 
( b  e.  A  ->  -.  a R b ) ) ) )
8079impd 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( ( a  e.  A  /\  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) )  ->  ( b  e.  A  ->  -.  a R b ) ) )
8180ralrimdv 2798 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( ( a  e.  A  /\  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) )  ->  A. b  e.  A  -.  a R b ) )
8281expd 434 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  A. b  e.  A  -.  a R b ) ) )
8382reximdvai 2854 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( E. a  e.  A  A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
8483exp32 603 . . . . . . . . . . . . . . . . . 18  |-  ( D  =  (/)  ->  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  ( E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
8584com12 31 . . . . . . . . . . . . . . . . 17  |-  ( R  Po  A  ->  ( D  =  (/)  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  ( E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
8685adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( D  =  (/)  ->  ( (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( E. a  e.  A  A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
8786imp32 431 . . . . . . . . . . . . . . 15  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  ( D  =  (/)  /\  (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
8836, 87mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  ( D  =  (/)  /\  (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b )
8988exp45 612 . . . . . . . . . . . . 13  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( D  =  (/)  ->  ( (
w  We  A  /\  x  e.  On )  ->  ( A. y  e.  x  H  =/=  (/)  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
9089com23 78 . . . . . . . . . . . 12  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( (
w  We  A  /\  x  e.  On )  ->  ( D  =  (/)  ->  ( A. y  e.  x  H  =/=  (/)  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
9190expdimp 435 . . . . . . . . . . 11  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  ( x  e.  On  ->  ( D  =  (/)  ->  ( A. y  e.  x  H  =/=  (/)  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
9291imp4a 587 . . . . . . . . . 10  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  ( x  e.  On  ->  ( ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) )
9392com3l 81 . . . . . . . . 9  |-  ( x  e.  On  ->  (
( D  =  (/)  /\ 
A. y  e.  x  H  =/=  (/) )  ->  (
( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s
)  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) )
9493rexlimiv 2868 . . . . . . . 8  |-  ( E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) )  ->  (
( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s
)  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
955, 17, 943syl 20 . . . . . . 7  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
9695adantlr 712 . . . . . 6  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  ( ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
9796pm2.43i 47 . . . . 5  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b )
9897expcom 433 . . . 4  |-  ( w  We  A  ->  (
( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
9998exlimiv 1730 . . 3  |-  ( E. w  w  We  A  ->  ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s
)  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
1001, 99sylbi 195 . 2  |-  ( A  e.  dom  card  ->  ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
1011003impib 1192 1  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971   A.wal 1397    = wceq 1399   E.wex 1620    e. wcel 1826    =/= wne 2577   A.wral 2732   E.wrex 2733   {crab 2736   _Vcvv 3034    C_ wss 3389   (/)c0 3711   class class class wbr 4367    |-> cmpt 4425    Po wpo 4712    Or wor 4713    We wwe 4751   Oncon0 4792   dom cdm 4913   ran crn 4914   "cima 4916   Fun wfun 5490    Fn wfn 5491   iota_crio 6157  recscrecs 6959   cardccrd 8229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-recs 6960  df-en 7436  df-card 8233
This theorem is referenced by:  zorn2g  8796
  Copyright terms: Public domain W3C validator