MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem4 Structured version   Unicode version

Theorem zorn2lem4 8882
Description: Lemma for zorn2 8889. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u w v ) ) )
zorn2lem.4  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
zorn2lem.5  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
Assertion
Ref Expression
zorn2lem4  |-  ( ( R  Po  A  /\  w  We  A )  ->  E. x  e.  On  D  =  (/) )
Distinct variable groups:    f, g, u, v, w, x, z, A    D, f, u, v   
f, F, g, u, v, x, z    R, f, g, u, v, w, x, z    v, C
Allowed substitution hints:    C( x, z, w, u, f, g)    D( x, z, w, g)    F( w)

Proof of Theorem zorn2lem4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pm3.24 882 . 2  |-  -.  ( ran  F  e.  _V  /\  -.  ran  F  e.  _V )
2 df-ne 2640 . . . . 5  |-  ( D  =/=  (/)  <->  -.  D  =  (/) )
32ralbii 2874 . . . 4  |-  ( A. x  e.  On  D  =/=  (/)  <->  A. x  e.  On  -.  D  =  (/) )
4 df-ral 2798 . . . 4  |-  ( A. x  e.  On  D  =/=  (/)  <->  A. x ( x  e.  On  ->  D  =/=  (/) ) )
5 ralnex 2889 . . . 4  |-  ( A. x  e.  On  -.  D  =  (/)  <->  -.  E. x  e.  On  D  =  (/) )
63, 4, 53bitr3i 275 . . 3  |-  ( A. x ( x  e.  On  ->  D  =/=  (/) )  <->  -.  E. x  e.  On  D  =  (/) )
7 weso 4860 . . . . . . . . 9  |-  ( w  We  A  ->  w  Or  A )
87adantr 465 . . . . . . . 8  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  w  Or  A )
9 vex 3098 . . . . . . . 8  |-  w  e. 
_V
10 soex 6728 . . . . . . . 8  |-  ( ( w  Or  A  /\  w  e.  _V )  ->  A  e.  _V )
118, 9, 10sylancl 662 . . . . . . 7  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  A  e.  _V )
12 zorn2lem.3 . . . . . . . . . . 11  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u w v ) ) )
1312tfr1 7068 . . . . . . . . . 10  |-  F  Fn  On
14 fvelrnb 5905 . . . . . . . . . 10  |-  ( F  Fn  On  ->  (
y  e.  ran  F  <->  E. x  e.  On  ( F `  x )  =  y ) )
1513, 14ax-mp 5 . . . . . . . . 9  |-  ( y  e.  ran  F  <->  E. x  e.  On  ( F `  x )  =  y )
16 nfv 1694 . . . . . . . . . . 11  |-  F/ x  w  We  A
17 nfa1 1883 . . . . . . . . . . 11  |-  F/ x A. x ( x  e.  On  ->  D  =/=  (/) )
1816, 17nfan 1914 . . . . . . . . . 10  |-  F/ x
( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )
19 nfv 1694 . . . . . . . . . 10  |-  F/ x  y  e.  A
20 zorn2lem.5 . . . . . . . . . . . . . . . . . 18  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
21 ssrab2 3570 . . . . . . . . . . . . . . . . . 18  |-  { z  e.  A  |  A. g  e.  ( F " x ) g R z }  C_  A
2220, 21eqsstri 3519 . . . . . . . . . . . . . . . . 17  |-  D  C_  A
23 zorn2lem.4 . . . . . . . . . . . . . . . . . 18  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
2412, 23, 20zorn2lem1 8879 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( F `  x )  e.  D
)
2522, 24sseldi 3487 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( F `  x )  e.  A
)
26 eleq1 2515 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  A  <->  y  e.  A ) )
2725, 26syl5ibcom 220 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( ( F `
 x )  =  y  ->  y  e.  A ) )
2827exp32 605 . . . . . . . . . . . . . 14  |-  ( x  e.  On  ->  (
w  We  A  -> 
( D  =/=  (/)  ->  (
( F `  x
)  =  y  -> 
y  e.  A ) ) ) )
2928com12 31 . . . . . . . . . . . . 13  |-  ( w  We  A  ->  (
x  e.  On  ->  ( D  =/=  (/)  ->  (
( F `  x
)  =  y  -> 
y  e.  A ) ) ) )
3029a2d 26 . . . . . . . . . . . 12  |-  ( w  We  A  ->  (
( x  e.  On  ->  D  =/=  (/) )  -> 
( x  e.  On  ->  ( ( F `  x )  =  y  ->  y  e.  A
) ) ) )
3130spsd 1853 . . . . . . . . . . 11  |-  ( w  We  A  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  ( x  e.  On  ->  ( ( F `  x )  =  y  ->  y  e.  A ) ) ) )
3231imp 429 . . . . . . . . . 10  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  (
x  e.  On  ->  ( ( F `  x
)  =  y  -> 
y  e.  A ) ) )
3318, 19, 32rexlimd 2927 . . . . . . . . 9  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  ( E. x  e.  On  ( F `  x )  =  y  ->  y  e.  A ) )
3415, 33syl5bi 217 . . . . . . . 8  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  (
y  e.  ran  F  ->  y  e.  A ) )
3534ssrdv 3495 . . . . . . 7  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  ran  F 
C_  A )
3611, 35ssexd 4584 . . . . . 6  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  ran  F  e.  _V )
3736ex 434 . . . . 5  |-  ( w  We  A  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  ran  F  e. 
_V ) )
3837adantl 466 . . . 4  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  ran  F  e.  _V ) )
3912, 23, 20zorn2lem3 8881 . . . . . . . . . . . . . 14  |-  ( ( R  Po  A  /\  ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) ) )  ->  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )
4039exp45 614 . . . . . . . . . . . . 13  |-  ( R  Po  A  ->  (
x  e.  On  ->  ( w  We  A  -> 
( D  =/=  (/)  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) ) ) )
4140com23 78 . . . . . . . . . . . 12  |-  ( R  Po  A  ->  (
w  We  A  -> 
( x  e.  On  ->  ( D  =/=  (/)  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) ) ) )
4241imp 429 . . . . . . . . . . 11  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( x  e.  On  ->  ( D  =/=  (/)  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) ) )
4342a2d 26 . . . . . . . . . 10  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( ( x  e.  On  ->  D  =/=  (/) )  ->  ( x  e.  On  ->  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )
4443imp4a 589 . . . . . . . . 9  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( ( x  e.  On  ->  D  =/=  (/) )  ->  ( (
x  e.  On  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
4544alrimdv 1708 . . . . . . . 8  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( ( x  e.  On  ->  D  =/=  (/) )  ->  A. y
( ( x  e.  On  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
4645alimdv 1696 . . . . . . 7  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  A. x A. y ( ( x  e.  On  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
47 r2al 2821 . . . . . . 7  |-  ( A. x  e.  On  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  <->  A. x A. y ( ( x  e.  On  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) )
4846, 47syl6ibr 227 . . . . . 6  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  A. x  e.  On  A. y  e.  x  -.  ( F `
 x )  =  ( F `  y
) ) )
49 ssid 3508 . . . . . . . 8  |-  On  C_  On
5013tz7.48lem 7108 . . . . . . . 8  |-  ( ( On  C_  On  /\  A. x  e.  On  A. y  e.  x  -.  ( F `  x )  =  ( F `  y ) )  ->  Fun  `' ( F  |`  On ) )
5149, 50mpan 670 . . . . . . 7  |-  ( A. x  e.  On  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  Fun  `' ( F  |`  On ) )
52 fnrel 5669 . . . . . . . . . . 11  |-  ( F  Fn  On  ->  Rel  F )
5313, 52ax-mp 5 . . . . . . . . . 10  |-  Rel  F
54 fndm 5670 . . . . . . . . . . . 12  |-  ( F  Fn  On  ->  dom  F  =  On )
5513, 54ax-mp 5 . . . . . . . . . . 11  |-  dom  F  =  On
5655eqimssi 3543 . . . . . . . . . 10  |-  dom  F  C_  On
57 relssres 5301 . . . . . . . . . 10  |-  ( ( Rel  F  /\  dom  F 
C_  On )  -> 
( F  |`  On )  =  F )
5853, 56, 57mp2an 672 . . . . . . . . 9  |-  ( F  |`  On )  =  F
5958cnveqi 5167 . . . . . . . 8  |-  `' ( F  |`  On )  =  `' F
6059funeqi 5598 . . . . . . 7  |-  ( Fun  `' ( F  |`  On )  <->  Fun  `' F )
6151, 60sylib 196 . . . . . 6  |-  ( A. x  e.  On  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  Fun  `' F )
6248, 61syl6 33 . . . . 5  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  Fun  `' F ) )
63 onprc 6605 . . . . . 6  |-  -.  On  e.  _V
64 funrnex 6752 . . . . . . . 8  |-  ( dom  `' F  e.  _V  ->  ( Fun  `' F  ->  ran  `' F  e. 
_V ) )
6564com12 31 . . . . . . 7  |-  ( Fun  `' F  ->  ( dom  `' F  e.  _V  ->  ran  `' F  e. 
_V ) )
66 df-rn 5000 . . . . . . . 8  |-  ran  F  =  dom  `' F
6766eleq1i 2520 . . . . . . 7  |-  ( ran 
F  e.  _V  <->  dom  `' F  e.  _V )
68 dfdm4 5185 . . . . . . . . 9  |-  dom  F  =  ran  `' F
6955, 68eqtr3i 2474 . . . . . . . 8  |-  On  =  ran  `' F
7069eleq1i 2520 . . . . . . 7  |-  ( On  e.  _V  <->  ran  `' F  e.  _V )
7165, 67, 703imtr4g 270 . . . . . 6  |-  ( Fun  `' F  ->  ( ran 
F  e.  _V  ->  On  e.  _V ) )
7263, 71mtoi 178 . . . . 5  |-  ( Fun  `' F  ->  -.  ran  F  e.  _V )
7362, 72syl6 33 . . . 4  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  -.  ran  F  e.  _V )
)
7438, 73jcad 533 . . 3  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  ( ran  F  e.  _V  /\  -.  ran  F  e.  _V ) ) )
756, 74syl5bir 218 . 2  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( -.  E. x  e.  On  D  =  (/)  ->  ( ran  F  e. 
_V  /\  -.  ran  F  e.  _V ) ) )
761, 75mt3i 126 1  |-  ( ( R  Po  A  /\  w  We  A )  ->  E. x  e.  On  D  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1381    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   {crab 2797   _Vcvv 3095    C_ wss 3461   (/)c0 3770   class class class wbr 4437    |-> cmpt 4495    Po wpo 4788    Or wor 4789    We wwe 4827   Oncon0 4868   `'ccnv 4988   dom cdm 4989   ran crn 4990    |` cres 4991   "cima 4992   Rel wrel 4994   Fun wfun 5572    Fn wfn 5573   ` cfv 5578   iota_crio 6241  recscrecs 7043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-recs 7044
This theorem is referenced by:  zorn2lem7  8885
  Copyright terms: Public domain W3C validator