MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2g Structured version   Unicode version

Theorem zorn2g 8874
Description: Zorn's Lemma of [Monk1] p. 117. This version of zorn2 8877 avoids the Axiom of Choice by assuming that  A is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorn2g  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, y,
z, w, R    x, A, y, z, w

Proof of Theorem zorn2g
Dummy variables  v  u  g  h  t 
s  r  q  d  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4442 . . . . . . . . 9  |-  ( g  =  k  ->  (
g q n  <->  k q
n ) )
21notbid 292 . . . . . . . 8  |-  ( g  =  k  ->  ( -.  g q n  <->  -.  k
q n ) )
32cbvralv 3081 . . . . . . 7  |-  ( A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n  <->  A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q n )
4 breq2 4443 . . . . . . . . 9  |-  ( n  =  m  ->  (
k q n  <->  k q
m ) )
54notbid 292 . . . . . . . 8  |-  ( n  =  m  ->  ( -.  k q n  <->  -.  k
q m ) )
65ralbidv 2893 . . . . . . 7  |-  ( n  =  m  ->  ( A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q n  <->  A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m ) )
73, 6syl5bb 257 . . . . . 6  |-  ( n  =  m  ->  ( A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n  <->  A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m ) )
87cbvriotav 6243 . . . . 5  |-  ( iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n )  =  (
iota_ m  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m )
9 rneq 5217 . . . . . . . 8  |-  ( h  =  d  ->  ran  h  =  ran  d )
109raleqdv 3057 . . . . . . 7  |-  ( h  =  d  ->  ( A. q  e.  ran  h  q R v  <->  A. q  e.  ran  d  q R v ) )
1110rabbidv 3098 . . . . . 6  |-  ( h  =  d  ->  { v  e.  A  |  A. q  e.  ran  h  q R v }  =  { v  e.  A  |  A. q  e.  ran  d  q R v } )
1211raleqdv 3057 . . . . . 6  |-  ( h  =  d  ->  ( A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m  <->  A. k  e.  { v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )
1311, 12riotaeqbidv 6235 . . . . 5  |-  ( h  =  d  ->  ( iota_ m  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m )  =  ( iota_ m  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )
148, 13syl5eq 2507 . . . 4  |-  ( h  =  d  ->  ( iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n )  =  ( iota_ m  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )
1514cbvmptv 4530 . . 3  |-  ( h  e.  _V  |->  ( iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) )  =  ( d  e.  _V  |->  ( iota_ m  e.  {
v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )
16 recseq 7035 . . 3  |-  ( ( h  e.  _V  |->  (
iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) )  =  ( d  e.  _V  |->  ( iota_ m  e.  { v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e.  { v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )  -> recs ( ( h  e. 
_V  |->  ( iota_ n  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )  = recs ( ( d  e.  _V  |->  ( iota_ m  e.  { v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e.  { v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) ) ) )
1715, 16ax-mp 5 . 2  |- recs ( ( h  e.  _V  |->  (
iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )  = recs (
( d  e.  _V  |->  ( iota_ m  e.  {
v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) ) )
18 breq1 4442 . . . . 5  |-  ( q  =  s  ->  (
q R v  <->  s R
v ) )
1918cbvralv 3081 . . . 4  |-  ( A. q  e.  ran  d  q R v  <->  A. s  e.  ran  d  s R v )
20 breq2 4443 . . . . 5  |-  ( v  =  r  ->  (
s R v  <->  s R
r ) )
2120ralbidv 2893 . . . 4  |-  ( v  =  r  ->  ( A. s  e.  ran  d  s R v  <->  A. s  e.  ran  d  s R r ) )
2219, 21syl5bb 257 . . 3  |-  ( v  =  r  ->  ( A. q  e.  ran  d  q R v  <->  A. s  e.  ran  d  s R r ) )
2322cbvrabv 3105 . 2  |-  { v  e.  A  |  A. q  e.  ran  d  q R v }  =  { r  e.  A  |  A. s  e.  ran  d  s R r }
24 eqid 2454 . 2  |-  { r  e.  A  |  A. s  e.  (recs (
( h  e.  _V  |->  ( iota_ n  e.  {
v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )
" u ) s R r }  =  { r  e.  A  |  A. s  e.  (recs ( ( h  e. 
_V  |->  ( iota_ n  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )
" u ) s R r }
25 eqid 2454 . 2  |-  { r  e.  A  |  A. s  e.  (recs (
( h  e.  _V  |->  ( iota_ n  e.  {
v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )
" t ) s R r }  =  { r  e.  A  |  A. s  e.  (recs ( ( h  e. 
_V  |->  ( iota_ n  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )
" t ) s R r }
2617, 23, 24, 25zorn2lem7 8873 1  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    /\ w3a 971   A.wal 1396    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106    C_ wss 3461   class class class wbr 4439    |-> cmpt 4497    Po wpo 4787    Or wor 4788   dom cdm 4988   ran crn 4989   "cima 4991   iota_crio 6231  recscrecs 7033   cardccrd 8307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-recs 7034  df-en 7510  df-card 8311
This theorem is referenced by:  zorng  8875  zorn2  8877
  Copyright terms: Public domain W3C validator