MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2 Unicode version

Theorem zorn2 8342
Description: Zorn's Lemma of [Monk1] p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set  A (with an ordering relation  R) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 8332 through zorn2lem7 8338; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 8338. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
zornn0.1  |-  A  e. 
_V
Assertion
Ref Expression
zorn2  |-  ( ( R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, w, y, z, A    w, R, x, y, z

Proof of Theorem zorn2
StepHypRef Expression
1 zornn0.1 . . 3  |-  A  e. 
_V
2 numth3 8306 . . 3  |-  ( A  e.  _V  ->  A  e.  dom  card )
31, 2ax-mp 8 . 2  |-  A  e. 
dom  card
4 zorn2g 8339 . 2  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
53, 4mp3an1 1266 1  |-  ( ( R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359   A.wal 1546    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   class class class wbr 4172    Po wpo 4461    Or wor 4462   dom cdm 4837   cardccrd 7778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-ac2 8299
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6508  df-recs 6592  df-en 7069  df-card 7782  df-ac 7953
  Copyright terms: Public domain W3C validator