MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2 Structured version   Unicode version

Theorem zorn2 8838
Description: Zorn's Lemma of [Monk1] p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set  A (with an ordering relation  R) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 8828 through zorn2lem7 8834; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 8834. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
zornn0.1  |-  A  e. 
_V
Assertion
Ref Expression
zorn2  |-  ( ( R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, w, y, z, A    w, R, x, y, z

Proof of Theorem zorn2
StepHypRef Expression
1 zornn0.1 . . 3  |-  A  e. 
_V
2 numth3 8802 . . 3  |-  ( A  e.  _V  ->  A  e.  dom  card )
31, 2ax-mp 5 . 2  |-  A  e. 
dom  card
4 zorn2g 8835 . 2  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
53, 4mp3an1 1313 1  |-  ( ( R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367   A.wal 1403    e. wcel 1842   A.wral 2753   E.wrex 2754   _Vcvv 3058    C_ wss 3413   class class class wbr 4394    Po wpo 4741    Or wor 4742   dom cdm 4942   cardccrd 8268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-ac2 8795
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-ord 4824  df-on 4825  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6196  df-recs 6999  df-en 7475  df-card 8272  df-ac 8449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator