MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunit Structured version   Unicode version

Theorem znunit 18122
Description: The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
znunit.l  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
znunit  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )

Proof of Theorem znunit
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5  |-  Y  =  (ℤ/n `  N )
21zncrng 18103 . . . 4  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
32adantr 465 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  CRing )
4 znunit.u . . . 4  |-  U  =  (Unit `  Y )
5 eqid 2454 . . . 4  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
6 eqid 2454 . . . 4  |-  ( ||r `  Y
)  =  ( ||r `  Y
)
74, 5, 6crngunit 16878 . . 3  |-  ( Y  e.  CRing  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `  Y
) ( 1r `  Y ) ) )
83, 7syl 16 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `
 Y ) ( 1r `  Y ) ) )
9 eqid 2454 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
10 znunit.l . . . . . . 7  |-  L  =  ( ZRHom `  Y
)
111, 9, 10znzrhfo 18106 . . . . . 6  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
1211adantr 465 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ -onto-> ( Base `  Y ) )
13 fof 5729 . . . . 5  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
1412, 13syl 16 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ --> ( Base `  Y ) )
15 ffvelrn 5951 . . . 4  |-  ( ( L : ZZ --> ( Base `  Y )  /\  A  e.  ZZ )  ->  ( L `  A )  e.  ( Base `  Y
) )
1614, 15sylancom 667 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A
)  e.  ( Base `  Y ) )
17 eqid 2454 . . . 4  |-  ( .r
`  Y )  =  ( .r `  Y
)
189, 6, 17dvdsr2 16863 . . 3  |-  ( ( L `  A )  e.  ( Base `  Y
)  ->  ( ( L `  A )
( ||r `
 Y ) ( 1r `  Y )  <->  E. x  e.  ( Base `  Y ) ( x ( .r `  Y ) ( L `
 A ) )  =  ( 1r `  Y ) ) )
1916, 18syl 16 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A ) ( ||r `  Y
) ( 1r `  Y )  <->  E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
20 forn 5732 . . . . . 6  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  ran  L  =  ( Base `  Y
) )
2112, 20syl 16 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ran  L  =  (
Base `  Y )
)
2221rexeqdv 3030 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. x  e.  (
Base `  Y )
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
23 ffn 5668 . . . . 5  |-  ( L : ZZ --> ( Base `  Y )  ->  L  Fn  ZZ )
24 oveq1 6208 . . . . . . 7  |-  ( x  =  ( L `  n )  ->  (
x ( .r `  Y ) ( L `
 A ) )  =  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) ) )
2524eqeq1d 2456 . . . . . 6  |-  ( x  =  ( L `  n )  ->  (
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  ( ( L `  n )
( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
) ) )
2625rexrn 5955 . . . . 5  |-  ( L  Fn  ZZ  ->  ( E. x  e.  ran  L ( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
2714, 23, 263syl 20 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
2822, 27bitr3d 255 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
29 crngrng 16779 . . . . . . . . . 10  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
303, 29syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  Ring )
3110zrhrhm 18069 . . . . . . . . 9  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
3230, 31syl 16 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L  e.  (ring RingHom  Y ) )
3332adantr 465 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  L  e.  (ring RingHom  Y
) )
34 simpr 461 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
35 simplr 754 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  A  e.  ZZ )
36 zringbas 18015 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
37 zringmulr 18018 . . . . . . . 8  |-  x.  =  ( .r ` ring )
3836, 37, 17rhmmul 16941 . . . . . . 7  |-  ( ( L  e.  (ring RingHom  Y )  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  ( L `  ( n  x.  A ) )  =  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) ) )
3933, 34, 35, 38syl3anc 1219 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L `  ( n  x.  A
) )  =  ( ( L `  n
) ( .r `  Y ) ( L `
 A ) ) )
4030adantr 465 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  Y  e.  Ring )
4110, 5zrh1 18070 . . . . . . 7  |-  ( Y  e.  Ring  ->  ( L `
 1 )  =  ( 1r `  Y
) )
4240, 41syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L ` 
1 )  =  ( 1r `  Y ) )
4339, 42eqeq12d 2476 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
44 simpll 753 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  N  e.  NN0 )
4534, 35zmulcld 10865 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( n  x.  A )  e.  ZZ )
46 1zzd 10789 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  1  e.  ZZ )
471, 10zndvds 18108 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( L `  ( n  x.  A
) )  =  ( L `  1 )  <-> 
N  ||  ( (
n  x.  A )  -  1 ) ) )
4844, 45, 46, 47syl3anc 1219 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
4943, 48bitr3d 255 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( ( L `  n ) ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
5049rexbidva 2865 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
51 simplr 754 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  A  e.  ZZ )
52 nn0z 10781 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5352ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  e.  ZZ )
54 gcddvds 13818 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
5551, 53, 54syl2anc 661 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
5655simpld 459 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  A )
5751, 53gcdcld 13821 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  NN0 )
5857nn0zd 10857 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  ZZ )
5934adantrr 716 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  n  e.  ZZ )
60 dvdsmultr2 13687 . . . . . . . . 9  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  (
( A  gcd  N
)  ||  A  ->  ( A  gcd  N ) 
||  ( n  x.  A ) ) )
6158, 59, 51, 60syl3anc 1219 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  -> 
( A  gcd  N
)  ||  ( n  x.  A ) ) )
6256, 61mpd 15 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( n  x.  A ) )
6345adantrr 716 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( n  x.  A
)  e.  ZZ )
64 1zzd 10789 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
1  e.  ZZ )
6555simprd 463 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  N )
66 simprr 756 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) )
67 peano2zm 10800 . . . . . . . . . . 11  |-  ( ( n  x.  A )  e.  ZZ  ->  (
( n  x.  A
)  -  1 )  e.  ZZ )
6863, 67syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( n  x.  A )  -  1 )  e.  ZZ )
69 dvdstr 13685 . . . . . . . . . 10  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  (
( n  x.  A
)  -  1 )  e.  ZZ )  -> 
( ( ( A  gcd  N )  ||  N  /\  N  ||  (
( n  x.  A
)  -  1 ) )  ->  ( A  gcd  N )  ||  (
( n  x.  A
)  -  1 ) ) )
7058, 53, 68, 69syl3anc 1219 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( ( A  gcd  N )  ||  N  /\  N  ||  (
( n  x.  A
)  -  1 ) )  ->  ( A  gcd  N )  ||  (
( n  x.  A
)  -  1 ) ) )
7165, 66, 70mp2and 679 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )
72 dvdssub2 13689 . . . . . . . 8  |-  ( ( ( ( A  gcd  N )  e.  ZZ  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  /\  ( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )  ->  ( ( A  gcd  N )  ||  ( n  x.  A
)  <->  ( A  gcd  N )  ||  1 ) )
7358, 63, 64, 71, 72syl31anc 1222 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  ( n  x.  A )  <->  ( A  gcd  N )  ||  1
) )
7462, 73mpbid 210 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  1 )
75 dvds1 13700 . . . . . . 7  |-  ( ( A  gcd  N )  e.  NN0  ->  ( ( A  gcd  N ) 
||  1  <->  ( A  gcd  N )  =  1 ) )
7657, 75syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  1  <->  ( A  gcd  N )  =  1 ) )
7774, 76mpbid 210 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  =  1 )
7877rexlimdvaa 2948 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  ->  ( A  gcd  N )  =  1 ) )
79 simpr 461 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  A  e.  ZZ )
8052adantr 465 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  N  e.  ZZ )
81 bezout 13845 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
8279, 80, 81syl2anc 661 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
83 eqeq1 2458 . . . . . . 7  |-  ( ( A  gcd  N )  =  1  ->  (
( A  gcd  N
)  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  1  =  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
84832rexbidv 2880 . . . . . 6  |-  ( ( A  gcd  N )  =  1  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
8582, 84syl5ibcom 220 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
8652ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  e.  ZZ )
87 dvdsmul1 13673 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m ) )
8886, 87sylancom 667 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m
) )
89 zmulcl 10805 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  x.  m
)  e.  ZZ )
9086, 89sylancom 667 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  ZZ )
91 dvdsnegb 13669 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  x.  m
)  e.  ZZ )  ->  ( N  ||  ( N  x.  m
)  <->  N  ||  -u ( N  x.  m )
) )
9286, 90, 91syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  ||  ( N  x.  m )  <->  N  ||  -u ( N  x.  m )
) )
9388, 92mpbid 210 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  -u ( N  x.  m
) )
9435adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  ZZ )
9594zcnd 10860 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  CC )
96 zcn 10763 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  CC )
9796ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  n  e.  CC )
9895, 97mulcomd 9519 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( A  x.  n )  =  ( n  x.  A ) )
9998oveq1d 6216 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  +  ( N  x.  m
) ) )
10097, 95mulcld 9518 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
n  x.  A )  e.  CC )
10190zcnd 10860 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  CC )
102100, 101subnegd 9838 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  -u ( N  x.  m )
)  =  ( ( n  x.  A )  +  ( N  x.  m ) ) )
10399, 102eqtr4d 2498 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  -  -u ( N  x.  m
) ) )
104103oveq2d 6217 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  ( ( n  x.  A )  -  ( ( n  x.  A )  -  -u ( N  x.  m )
) ) )
105101negcld 9818 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  -u ( N  x.  m )  e.  CC )
106100, 105nncand 9836 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( n  x.  A )  -  -u ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
107104, 106eqtrd 2495 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
10893, 107breqtrrd 4427 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( ( n  x.  A )  -  (
( A  x.  n
)  +  ( N  x.  m ) ) ) )
109 oveq2 6209 . . . . . . . . 9  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  (
( n  x.  A
)  -  1 )  =  ( ( n  x.  A )  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
110109breq2d 4413 . . . . . . . 8  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  ( N  ||  ( ( n  x.  A )  - 
1 )  <->  N  ||  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) ) )
111108, 110syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
1  =  ( ( A  x.  n )  +  ( N  x.  m ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) ) )
112111rexlimdva 2947 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  N  ||  (
( n  x.  A
)  -  1 ) ) )
113112reximdva 2934 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
11485, 113syld 44 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
11578, 114impbid 191 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  <-> 
( A  gcd  N
)  =  1 ) )
11628, 50, 1153bitrd 279 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <-> 
( A  gcd  N
)  =  1 ) )
1178, 19, 1163bitrd 279 1  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   E.wrex 2800   class class class wbr 4401   ran crn 4950    Fn wfn 5522   -->wf 5523   -onto->wfo 5525   ` cfv 5527  (class class class)co 6201   CCcc 9392   1c1 9395    + caddc 9397    x. cmul 9399    - cmin 9707   -ucneg 9708   NN0cn0 10691   ZZcz 10758    || cdivides 13654    gcd cgcd 13809   Basecbs 14293   .rcmulr 14359   1rcur 16726   Ringcrg 16769   CRingccrg 16770   ||rcdsr 16854  Unitcui 16855   RingHom crh 16928  ℤringzring 18009   ZRHomczrh 18057  ℤ/nczn 18060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472  ax-addf 9473  ax-mulf 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-tpos 6856  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-ec 7214  df-qs 7218  df-map 7327  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-sup 7803  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-4 10494  df-5 10495  df-6 10496  df-7 10497  df-8 10498  df-9 10499  df-10 10500  df-n0 10692  df-z 10759  df-dec 10868  df-uz 10974  df-rp 11104  df-fz 11556  df-fl 11760  df-mod 11827  df-seq 11925  df-exp 11984  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-dvds 13655  df-gcd 13810  df-struct 14295  df-ndx 14296  df-slot 14297  df-base 14298  df-sets 14299  df-ress 14300  df-plusg 14371  df-mulr 14372  df-starv 14373  df-sca 14374  df-vsca 14375  df-ip 14376  df-tset 14377  df-ple 14378  df-ds 14380  df-unif 14381  df-0g 14500  df-imas 14566  df-divs 14567  df-mnd 15535  df-mhm 15584  df-grp 15665  df-minusg 15666  df-sbg 15667  df-mulg 15668  df-subg 15798  df-nsg 15799  df-eqg 15800  df-ghm 15865  df-cmn 16401  df-abl 16402  df-mgp 16715  df-ur 16727  df-rng 16771  df-cring 16772  df-oppr 16839  df-dvdsr 16857  df-unit 16858  df-rnghom 16930  df-subrg 16987  df-lmod 17074  df-lss 17138  df-lsp 17177  df-sra 17377  df-rgmod 17378  df-lidl 17379  df-rsp 17380  df-2idl 17438  df-cnfld 17945  df-zring 18010  df-zrh 18061  df-zn 18064
This theorem is referenced by:  znunithash  18123  znrrg  18124  dchrelbas4  22716  lgsdchr  22821  rpvmasumlem  22870  dirith  22912
  Copyright terms: Public domain W3C validator