MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunit Structured version   Unicode version

Theorem znunit 18362
Description: The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
znunit.l  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
znunit  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )

Proof of Theorem znunit
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5  |-  Y  =  (ℤ/n `  N )
21zncrng 18343 . . . 4  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
32adantr 465 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  CRing )
4 znunit.u . . . 4  |-  U  =  (Unit `  Y )
5 eqid 2460 . . . 4  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
6 eqid 2460 . . . 4  |-  ( ||r `  Y
)  =  ( ||r `  Y
)
74, 5, 6crngunit 17088 . . 3  |-  ( Y  e.  CRing  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `  Y
) ( 1r `  Y ) ) )
83, 7syl 16 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `
 Y ) ( 1r `  Y ) ) )
9 eqid 2460 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
10 znunit.l . . . . . . 7  |-  L  =  ( ZRHom `  Y
)
111, 9, 10znzrhfo 18346 . . . . . 6  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
1211adantr 465 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ -onto-> ( Base `  Y ) )
13 fof 5786 . . . . 5  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
1412, 13syl 16 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ --> ( Base `  Y ) )
15 ffvelrn 6010 . . . 4  |-  ( ( L : ZZ --> ( Base `  Y )  /\  A  e.  ZZ )  ->  ( L `  A )  e.  ( Base `  Y
) )
1614, 15sylancom 667 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A
)  e.  ( Base `  Y ) )
17 eqid 2460 . . . 4  |-  ( .r
`  Y )  =  ( .r `  Y
)
189, 6, 17dvdsr2 17073 . . 3  |-  ( ( L `  A )  e.  ( Base `  Y
)  ->  ( ( L `  A )
( ||r `
 Y ) ( 1r `  Y )  <->  E. x  e.  ( Base `  Y ) ( x ( .r `  Y ) ( L `
 A ) )  =  ( 1r `  Y ) ) )
1916, 18syl 16 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A ) ( ||r `  Y
) ( 1r `  Y )  <->  E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
20 forn 5789 . . . . . 6  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  ran  L  =  ( Base `  Y
) )
2112, 20syl 16 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ran  L  =  (
Base `  Y )
)
2221rexeqdv 3058 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. x  e.  (
Base `  Y )
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
23 ffn 5722 . . . . 5  |-  ( L : ZZ --> ( Base `  Y )  ->  L  Fn  ZZ )
24 oveq1 6282 . . . . . . 7  |-  ( x  =  ( L `  n )  ->  (
x ( .r `  Y ) ( L `
 A ) )  =  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) ) )
2524eqeq1d 2462 . . . . . 6  |-  ( x  =  ( L `  n )  ->  (
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  ( ( L `  n )
( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
) ) )
2625rexrn 6014 . . . . 5  |-  ( L  Fn  ZZ  ->  ( E. x  e.  ran  L ( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
2714, 23, 263syl 20 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
2822, 27bitr3d 255 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
29 crngrng 16989 . . . . . . . . . 10  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
303, 29syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  Ring )
3110zrhrhm 18309 . . . . . . . . 9  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
3230, 31syl 16 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L  e.  (ring RingHom  Y ) )
3332adantr 465 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  L  e.  (ring RingHom  Y
) )
34 simpr 461 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
35 simplr 754 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  A  e.  ZZ )
36 zringbas 18255 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
37 zringmulr 18258 . . . . . . . 8  |-  x.  =  ( .r ` ring )
3836, 37, 17rhmmul 17153 . . . . . . 7  |-  ( ( L  e.  (ring RingHom  Y )  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  ( L `  ( n  x.  A ) )  =  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) ) )
3933, 34, 35, 38syl3anc 1223 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L `  ( n  x.  A
) )  =  ( ( L `  n
) ( .r `  Y ) ( L `
 A ) ) )
4030adantr 465 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  Y  e.  Ring )
4110, 5zrh1 18310 . . . . . . 7  |-  ( Y  e.  Ring  ->  ( L `
 1 )  =  ( 1r `  Y
) )
4240, 41syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L ` 
1 )  =  ( 1r `  Y ) )
4339, 42eqeq12d 2482 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
44 simpll 753 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  N  e.  NN0 )
4534, 35zmulcld 10961 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( n  x.  A )  e.  ZZ )
46 1zzd 10884 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  1  e.  ZZ )
471, 10zndvds 18348 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( L `  ( n  x.  A
) )  =  ( L `  1 )  <-> 
N  ||  ( (
n  x.  A )  -  1 ) ) )
4844, 45, 46, 47syl3anc 1223 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
4943, 48bitr3d 255 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( ( L `  n ) ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
5049rexbidva 2963 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
51 simplr 754 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  A  e.  ZZ )
52 nn0z 10876 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5352ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  e.  ZZ )
54 gcddvds 14001 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
5551, 53, 54syl2anc 661 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
5655simpld 459 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  A )
5751, 53gcdcld 14004 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  NN0 )
5857nn0zd 10953 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  ZZ )
5934adantrr 716 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  n  e.  ZZ )
60 dvdsmultr2 13869 . . . . . . . . 9  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  (
( A  gcd  N
)  ||  A  ->  ( A  gcd  N ) 
||  ( n  x.  A ) ) )
6158, 59, 51, 60syl3anc 1223 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  -> 
( A  gcd  N
)  ||  ( n  x.  A ) ) )
6256, 61mpd 15 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( n  x.  A ) )
6345adantrr 716 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( n  x.  A
)  e.  ZZ )
64 1zzd 10884 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
1  e.  ZZ )
6555simprd 463 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  N )
66 simprr 756 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) )
67 peano2zm 10895 . . . . . . . . . . 11  |-  ( ( n  x.  A )  e.  ZZ  ->  (
( n  x.  A
)  -  1 )  e.  ZZ )
6863, 67syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( n  x.  A )  -  1 )  e.  ZZ )
69 dvdstr 13867 . . . . . . . . . 10  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  (
( n  x.  A
)  -  1 )  e.  ZZ )  -> 
( ( ( A  gcd  N )  ||  N  /\  N  ||  (
( n  x.  A
)  -  1 ) )  ->  ( A  gcd  N )  ||  (
( n  x.  A
)  -  1 ) ) )
7058, 53, 68, 69syl3anc 1223 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( ( A  gcd  N )  ||  N  /\  N  ||  (
( n  x.  A
)  -  1 ) )  ->  ( A  gcd  N )  ||  (
( n  x.  A
)  -  1 ) ) )
7165, 66, 70mp2and 679 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )
72 dvdssub2 13871 . . . . . . . 8  |-  ( ( ( ( A  gcd  N )  e.  ZZ  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  /\  ( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )  ->  ( ( A  gcd  N )  ||  ( n  x.  A
)  <->  ( A  gcd  N )  ||  1 ) )
7358, 63, 64, 71, 72syl31anc 1226 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  ( n  x.  A )  <->  ( A  gcd  N )  ||  1
) )
7462, 73mpbid 210 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  1 )
75 dvds1 13882 . . . . . . 7  |-  ( ( A  gcd  N )  e.  NN0  ->  ( ( A  gcd  N ) 
||  1  <->  ( A  gcd  N )  =  1 ) )
7657, 75syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  1  <->  ( A  gcd  N )  =  1 ) )
7774, 76mpbid 210 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  =  1 )
7877rexlimdvaa 2949 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  ->  ( A  gcd  N )  =  1 ) )
79 simpr 461 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  A  e.  ZZ )
8052adantr 465 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  N  e.  ZZ )
81 bezout 14028 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
8279, 80, 81syl2anc 661 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
83 eqeq1 2464 . . . . . . 7  |-  ( ( A  gcd  N )  =  1  ->  (
( A  gcd  N
)  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  1  =  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
84832rexbidv 2973 . . . . . 6  |-  ( ( A  gcd  N )  =  1  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
8582, 84syl5ibcom 220 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
8652ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  e.  ZZ )
87 dvdsmul1 13855 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m ) )
8886, 87sylancom 667 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m
) )
89 zmulcl 10900 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  x.  m
)  e.  ZZ )
9086, 89sylancom 667 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  ZZ )
91 dvdsnegb 13851 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  x.  m
)  e.  ZZ )  ->  ( N  ||  ( N  x.  m
)  <->  N  ||  -u ( N  x.  m )
) )
9286, 90, 91syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  ||  ( N  x.  m )  <->  N  ||  -u ( N  x.  m )
) )
9388, 92mpbid 210 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  -u ( N  x.  m
) )
9435adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  ZZ )
9594zcnd 10956 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  CC )
96 zcn 10858 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  CC )
9796ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  n  e.  CC )
9895, 97mulcomd 9606 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( A  x.  n )  =  ( n  x.  A ) )
9998oveq1d 6290 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  +  ( N  x.  m
) ) )
10097, 95mulcld 9605 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
n  x.  A )  e.  CC )
10190zcnd 10956 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  CC )
102100, 101subnegd 9926 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  -u ( N  x.  m )
)  =  ( ( n  x.  A )  +  ( N  x.  m ) ) )
10399, 102eqtr4d 2504 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  -  -u ( N  x.  m
) ) )
104103oveq2d 6291 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  ( ( n  x.  A )  -  ( ( n  x.  A )  -  -u ( N  x.  m )
) ) )
105101negcld 9906 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  -u ( N  x.  m )  e.  CC )
106100, 105nncand 9924 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( n  x.  A )  -  -u ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
107104, 106eqtrd 2501 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
10893, 107breqtrrd 4466 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( ( n  x.  A )  -  (
( A  x.  n
)  +  ( N  x.  m ) ) ) )
109 oveq2 6283 . . . . . . . . 9  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  (
( n  x.  A
)  -  1 )  =  ( ( n  x.  A )  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
110109breq2d 4452 . . . . . . . 8  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  ( N  ||  ( ( n  x.  A )  - 
1 )  <->  N  ||  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) ) )
111108, 110syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
1  =  ( ( A  x.  n )  +  ( N  x.  m ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) ) )
112111rexlimdva 2948 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  N  ||  (
( n  x.  A
)  -  1 ) ) )
113112reximdva 2931 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
11485, 113syld 44 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
11578, 114impbid 191 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  <-> 
( A  gcd  N
)  =  1 ) )
11628, 50, 1153bitrd 279 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <-> 
( A  gcd  N
)  =  1 ) )
1178, 19, 1163bitrd 279 1  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   E.wrex 2808   class class class wbr 4440   ran crn 4993    Fn wfn 5574   -->wf 5575   -onto->wfo 5577   ` cfv 5579  (class class class)co 6275   CCcc 9479   1c1 9482    + caddc 9484    x. cmul 9486    - cmin 9794   -ucneg 9795   NN0cn0 10784   ZZcz 10853    || cdivides 13836    gcd cgcd 13992   Basecbs 14479   .rcmulr 14545   1rcur 16936   Ringcrg 16979   CRingccrg 16980   ||rcdsr 17064  Unitcui 17065   RingHom crh 17138  ℤringzring 18249   ZRHomczrh 18297  ℤ/nczn 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-tpos 6945  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-ec 7303  df-qs 7307  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-rp 11210  df-fz 11662  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-dvds 13837  df-gcd 13993  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-0g 14686  df-imas 14752  df-divs 14753  df-mnd 15721  df-mhm 15770  df-grp 15851  df-minusg 15852  df-sbg 15853  df-mulg 15854  df-subg 15986  df-nsg 15987  df-eqg 15988  df-ghm 16053  df-cmn 16589  df-abl 16590  df-mgp 16925  df-ur 16937  df-rng 16981  df-cring 16982  df-oppr 17049  df-dvdsr 17067  df-unit 17068  df-rnghom 17141  df-subrg 17203  df-lmod 17290  df-lss 17355  df-lsp 17394  df-sra 17594  df-rgmod 17595  df-lidl 17596  df-rsp 17597  df-2idl 17655  df-cnfld 18185  df-zring 18250  df-zrh 18301  df-zn 18304
This theorem is referenced by:  znunithash  18363  znrrg  18364  dchrelbas4  23239  lgsdchr  23344  rpvmasumlem  23393  dirith  23435
  Copyright terms: Public domain W3C validator