MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znrrg Unicode version

Theorem znrrg 16801
Description: The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for  N  =  0, where all nonzero integers are regular, but only  pm 1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
znrrg.e  |-  E  =  (RLReg `  Y )
Assertion
Ref Expression
znrrg  |-  ( N  e.  NN  ->  E  =  U )

Proof of Theorem znrrg
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 10184 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 znchr.y . . . . . . . 8  |-  Y  =  (ℤ/n `  N )
3 eqid 2404 . . . . . . . 8  |-  ( Base `  Y )  =  (
Base `  Y )
4 eqid 2404 . . . . . . . 8  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
52, 3, 4znzrhfo 16783 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
61, 5syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ( ZRHom `  Y ) : ZZ -onto-> ( Base `  Y
) )
7 znrrg.e . . . . . . . 8  |-  E  =  (RLReg `  Y )
87, 3rrgss 16307 . . . . . . 7  |-  E  C_  ( Base `  Y )
98sseli 3304 . . . . . 6  |-  ( x  e.  E  ->  x  e.  ( Base `  Y
) )
10 foelrn 5847 . . . . . 6  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  x  e.  ( Base `  Y ) )  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) )
116, 9, 10syl2an 464 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  E )  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) )
1211ex 424 . . . 4  |-  ( N  e.  NN  ->  (
x  e.  E  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) ) )
13 nncn 9964 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  CC )
1413ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  CC )
15 simplr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  n  e.  ZZ )
16 nnz 10259 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  N  e.  ZZ )
1716ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  ZZ )
18 nnne0 9988 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  =/=  0 )
1918ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  =/=  0
)
20 simpr 448 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  =  0  /\  N  =  0 )  ->  N  =  0 )
2120necon3ai 2607 . . . . . . . . . . . . . . . . . 18  |-  ( N  =/=  0  ->  -.  ( n  =  0  /\  N  =  0
) )
2219, 21syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  -.  ( n  =  0  /\  N  =  0 ) )
23 gcdn0cl 12969 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( n  =  0  /\  N  =  0 ) )  ->  ( n  gcd  N )  e.  NN )
2415, 17, 22, 23syl21anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  NN )
2524nncnd 9972 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  CC )
2624nnne0d 10000 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  =/=  0 )
2714, 25, 26divcan2d 9748 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  =  N )
28 gcddvds 12970 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( n  gcd  N )  ||  n  /\  ( n  gcd  N ) 
||  N ) )
2915, 17, 28syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  n  /\  ( n  gcd  N )  ||  N ) )
3029simpld 446 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  n )
31 nnz 10259 . . . . . . . . . . . . . . . . 17  |-  ( ( n  gcd  N )  e.  NN  ->  (
n  gcd  N )  e.  ZZ )
3224, 31syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  ZZ )
3329simprd 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  N )
34 simpll 731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  NN )
35 nndivdvds 12813 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  ( n  gcd  N )  e.  NN )  -> 
( ( n  gcd  N )  ||  N  <->  ( N  /  ( n  gcd  N ) )  e.  NN ) )
3634, 24, 35syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  N 
<->  ( N  /  (
n  gcd  N )
)  e.  NN ) )
3733, 36mpbid 202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  NN )
38 nnz 10259 . . . . . . . . . . . . . . . . 17  |-  ( ( N  /  ( n  gcd  N ) )  e.  NN  ->  ( N  /  ( n  gcd  N ) )  e.  ZZ )
3937, 38syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  ZZ )
40 dvdsmulc 12832 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  gcd  N
)  e.  ZZ  /\  n  e.  ZZ  /\  ( N  /  ( n  gcd  N ) )  e.  ZZ )  ->  ( ( n  gcd  N )  ||  n  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
4132, 15, 39, 40syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  n  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
4230, 41mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )
4327, 42eqbrtrrd 4194 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )
44 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  n
)  e.  E )
451ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  NN0 )
4645, 5syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
47 fof 5612 . . . . . . . . . . . . . . . . 17  |-  ( ( ZRHom `  Y ) : ZZ -onto-> ( Base `  Y
)  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
4846, 47syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
4948, 39ffvelrnd 5830 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) )  e.  ( Base `  Y
) )
50 eqid 2404 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Y )  =  ( .r `  Y
)
51 eqid 2404 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
527, 3, 50, 51rrgeq0i 16304 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ZRHom `  Y ) `  n
)  e.  E  /\  ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) )  e.  ( Base `  Y
) )  ->  (
( ( ( ZRHom `  Y ) `  n
) ( .r `  Y ) ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) ) )  =  ( 0g `  Y
)  ->  ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y ) ) )
5344, 49, 52syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  ->  (
( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) )  =  ( 0g `  Y
) ) )
542zncrng 16780 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
551, 54syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  Y  e.  CRing )
56 crngrng 15629 . . . . . . . . . . . . . . . . . . . 20  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
5755, 56syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  Y  e.  Ring )
5857ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  Y  e.  Ring )
59 eqid 2404 . . . . . . . . . . . . . . . . . . 19  |-  (flds  ZZ )  =  (flds  ZZ )
6059, 4zrhrhm 16748 . . . . . . . . . . . . . . . . . 18  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  ( (flds  ZZ ) RingHom  Y ) )
6158, 60syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y )  e.  ( (flds  ZZ ) RingHom  Y ) )
62 zsubrg 16707 . . . . . . . . . . . . . . . . . . 19  |-  ZZ  e.  (SubRing ` fld )
6359subrgbas 15832 . . . . . . . . . . . . . . . . . . 19  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  =  ( Base `  (flds  ZZ ) ) )
6462, 63ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ZZ  =  ( Base `  (flds  ZZ ) )
65 zex 10247 . . . . . . . . . . . . . . . . . . 19  |-  ZZ  e.  _V
66 cnfldmul 16664 . . . . . . . . . . . . . . . . . . . 20  |-  x.  =  ( .r ` fld )
6759, 66ressmulr 13537 . . . . . . . . . . . . . . . . . . 19  |-  ( ZZ  e.  _V  ->  x.  =  ( .r `  (flds  ZZ ) ) )
6865, 67ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r `  (flds  ZZ ) )
6964, 68, 50rhmmul 15783 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ZRHom `  Y
)  e.  ( (flds  ZZ ) RingHom  Y )  /\  n  e.  ZZ  /\  ( N  /  ( n  gcd  N ) )  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( ( ( ZRHom `  Y ) `  n ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) ) ) )
7061, 15, 39, 69syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( ( ( ZRHom `  Y ) `  n ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) ) ) )
7170eqeq1d 2412 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  ( (
( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y ) ) )
7215, 39zmulcld 10337 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  x.  ( N  /  (
n  gcd  N )
) )  e.  ZZ )
732, 4, 51zndvds0 16786 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( n  x.  ( N  /  ( n  gcd  N ) ) )  e.  ZZ )  ->  (
( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
7445, 72, 73syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
7571, 74bitr3d 247 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
762, 4, 51zndvds0 16786 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  ( N  /  (
n  gcd  N )
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  ( n  gcd  N ) ) ) )
7745, 39, 76syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  ( n  gcd  N ) ) ) )
7853, 75, 773imtr3d 259 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  ||  ( n  x.  ( N  /  ( n  gcd  N ) ) )  ->  N  ||  ( N  / 
( n  gcd  N
) ) ) )
7943, 78mpd 15 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  ||  ( N  /  ( n  gcd  N ) ) )
8014, 25, 26divcan1d 9747 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  (
n  gcd  N )
)  =  N )
8137nncnd 9972 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  CC )
8281mulid1d 9061 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  1 )  =  ( N  /  ( n  gcd  N ) ) )
8379, 80, 823brtr4d 4202 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  (
n  gcd  N )
)  ||  ( ( N  /  ( n  gcd  N ) )  x.  1 ) )
84 1z 10267 . . . . . . . . . . . . 13  |-  1  e.  ZZ
8584a1i 11 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  1  e.  ZZ )
8637nnne0d 10000 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  =/=  0
)
87 dvdscmulr 12833 . . . . . . . . . . . 12  |-  ( ( ( n  gcd  N
)  e.  ZZ  /\  1  e.  ZZ  /\  (
( N  /  (
n  gcd  N )
)  e.  ZZ  /\  ( N  /  (
n  gcd  N )
)  =/=  0 ) )  ->  ( (
( N  /  (
n  gcd  N )
)  x.  ( n  gcd  N ) ) 
||  ( ( N  /  ( n  gcd  N ) )  x.  1 )  <->  ( n  gcd  N )  ||  1 ) )
8832, 85, 39, 86, 87syl112anc 1188 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( N  /  ( n  gcd  N ) )  x.  ( n  gcd  N ) )  ||  (
( N  /  (
n  gcd  N )
)  x.  1 )  <-> 
( n  gcd  N
)  ||  1 ) )
8983, 88mpbid 202 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  1 )
9015, 17gcdcld 12973 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  NN0 )
91 dvds1 12853 . . . . . . . . . . 11  |-  ( ( n  gcd  N )  e.  NN0  ->  ( ( n  gcd  N ) 
||  1  <->  ( n  gcd  N )  =  1 ) )
9290, 91syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  1 
<->  ( n  gcd  N
)  =  1 ) )
9389, 92mpbid 202 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  =  1 )
94 znunit.u . . . . . . . . . . 11  |-  U  =  (Unit `  Y )
952, 94, 4znunit 16799 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  n
)  e.  U  <->  ( n  gcd  N )  =  1 ) )
9645, 15, 95syl2anc 643 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  n )  e.  U  <->  ( n  gcd  N )  =  1 ) )
9793, 96mpbird 224 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  n
)  e.  U )
9897ex 424 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  n
)  e.  E  -> 
( ( ZRHom `  Y ) `  n
)  e.  U ) )
99 eleq1 2464 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( x  e.  E  <->  ( ( ZRHom `  Y ) `  n
)  e.  E ) )
100 eleq1 2464 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( x  e.  U  <->  ( ( ZRHom `  Y ) `  n
)  e.  U ) )
10199, 100imbi12d 312 . . . . . . 7  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( (
x  e.  E  ->  x  e.  U )  <->  ( ( ( ZRHom `  Y ) `  n
)  e.  E  -> 
( ( ZRHom `  Y ) `  n
)  e.  U ) ) )
10298, 101syl5ibrcom 214 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( x  =  ( ( ZRHom `  Y
) `  n )  ->  ( x  e.  E  ->  x  e.  U ) ) )
103102rexlimdva 2790 . . . . 5  |-  ( N  e.  NN  ->  ( E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n )  ->  (
x  e.  E  ->  x  e.  U )
) )
104103com23 74 . . . 4  |-  ( N  e.  NN  ->  (
x  e.  E  -> 
( E. n  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  n )  ->  x  e.  U ) ) )
10512, 104mpdd 38 . . 3  |-  ( N  e.  NN  ->  (
x  e.  E  ->  x  e.  U )
)
106105ssrdv 3314 . 2  |-  ( N  e.  NN  ->  E  C_  U )
1077, 94unitrrg 16308 . . 3  |-  ( Y  e.  Ring  ->  U  C_  E )
10857, 107syl 16 . 2  |-  ( N  e.  NN  ->  U  C_  E )
109106, 108eqssd 3325 1  |-  ( N  e.  NN  ->  E  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   _Vcvv 2916    C_ wss 3280   class class class wbr 4172   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    x. cmul 8951    / cdiv 9633   NNcn 9956   NN0cn0 10177   ZZcz 10238    || cdivides 12807    gcd cgcd 12961   Basecbs 13424   ↾s cress 13425   .rcmulr 13485   0gc0g 13678   Ringcrg 15615   CRingccrg 15616  Unitcui 15699   RingHom crh 15772  SubRingcsubrg 15819  RLRegcrlreg 16294  ℂfldccnfld 16658   ZRHomczrh 16733  ℤ/nczn 16736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-rp 10569  df-fz 11000  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-0g 13682  df-imas 13689  df-divs 13690  df-mnd 14645  df-mhm 14693  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-nsg 14897  df-eqg 14898  df-ghm 14959  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-rnghom 15774  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lsp 16003  df-sra 16199  df-rgmod 16200  df-lidl 16201  df-rsp 16202  df-2idl 16258  df-rlreg 16298  df-cnfld 16659  df-zrh 16737  df-zn 16740
  Copyright terms: Public domain W3C validator