MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znrrg Structured version   Unicode version

Theorem znrrg 18003
Description: The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for  N  =  0, where all nonzero integers are regular, but only  pm 1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
znrrg.e  |-  E  =  (RLReg `  Y )
Assertion
Ref Expression
znrrg  |-  ( N  e.  NN  ->  E  =  U )

Proof of Theorem znrrg
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 10591 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 znchr.y . . . . . . . 8  |-  Y  =  (ℤ/n `  N )
3 eqid 2443 . . . . . . . 8  |-  ( Base `  Y )  =  (
Base `  Y )
4 eqid 2443 . . . . . . . 8  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
52, 3, 4znzrhfo 17985 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
61, 5syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ( ZRHom `  Y ) : ZZ -onto-> ( Base `  Y
) )
7 znrrg.e . . . . . . . 8  |-  E  =  (RLReg `  Y )
87, 3rrgss 17369 . . . . . . 7  |-  E  C_  ( Base `  Y )
98sseli 3357 . . . . . 6  |-  ( x  e.  E  ->  x  e.  ( Base `  Y
) )
10 foelrn 5867 . . . . . 6  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  x  e.  ( Base `  Y ) )  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) )
116, 9, 10syl2an 477 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  E )  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) )
1211ex 434 . . . 4  |-  ( N  e.  NN  ->  (
x  e.  E  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) ) )
13 nncn 10335 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  CC )
1413ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  CC )
15 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  n  e.  ZZ )
16 nnz 10673 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  N  e.  ZZ )
1716ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  ZZ )
18 nnne0 10359 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  =/=  0 )
1918ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  =/=  0
)
20 simpr 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  =  0  /\  N  =  0 )  ->  N  =  0 )
2120necon3ai 2656 . . . . . . . . . . . . . . . . . 18  |-  ( N  =/=  0  ->  -.  ( n  =  0  /\  N  =  0
) )
2219, 21syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  -.  ( n  =  0  /\  N  =  0 ) )
23 gcdn0cl 13703 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( n  =  0  /\  N  =  0 ) )  ->  ( n  gcd  N )  e.  NN )
2415, 17, 22, 23syl21anc 1217 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  NN )
2524nncnd 10343 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  CC )
2624nnne0d 10371 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  =/=  0 )
2714, 25, 26divcan2d 10114 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  =  N )
28 gcddvds 13704 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( n  gcd  N )  ||  n  /\  ( n  gcd  N ) 
||  N ) )
2915, 17, 28syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  n  /\  ( n  gcd  N )  ||  N ) )
3029simpld 459 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  n )
31 nnz 10673 . . . . . . . . . . . . . . . . 17  |-  ( ( n  gcd  N )  e.  NN  ->  (
n  gcd  N )  e.  ZZ )
3224, 31syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  ZZ )
3329simprd 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  N )
34 simpll 753 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  NN )
35 nndivdvds 13546 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  ( n  gcd  N )  e.  NN )  -> 
( ( n  gcd  N )  ||  N  <->  ( N  /  ( n  gcd  N ) )  e.  NN ) )
3634, 24, 35syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  N 
<->  ( N  /  (
n  gcd  N )
)  e.  NN ) )
3733, 36mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  NN )
38 nnz 10673 . . . . . . . . . . . . . . . . 17  |-  ( ( N  /  ( n  gcd  N ) )  e.  NN  ->  ( N  /  ( n  gcd  N ) )  e.  ZZ )
3937, 38syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  ZZ )
40 dvdsmulc 13565 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  gcd  N
)  e.  ZZ  /\  n  e.  ZZ  /\  ( N  /  ( n  gcd  N ) )  e.  ZZ )  ->  ( ( n  gcd  N )  ||  n  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
4132, 15, 39, 40syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  n  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
4230, 41mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )
4327, 42eqbrtrrd 4319 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )
44 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  n
)  e.  E )
451ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  NN0 )
4645, 5syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
47 fof 5625 . . . . . . . . . . . . . . . . 17  |-  ( ( ZRHom `  Y ) : ZZ -onto-> ( Base `  Y
)  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
4846, 47syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
4948, 39ffvelrnd 5849 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) )  e.  ( Base `  Y
) )
50 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Y )  =  ( .r `  Y
)
51 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
527, 3, 50, 51rrgeq0i 17365 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ZRHom `  Y ) `  n
)  e.  E  /\  ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) )  e.  ( Base `  Y
) )  ->  (
( ( ( ZRHom `  Y ) `  n
) ( .r `  Y ) ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) ) )  =  ( 0g `  Y
)  ->  ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y ) ) )
5344, 49, 52syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  ->  (
( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) )  =  ( 0g `  Y
) ) )
542zncrng 17982 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
551, 54syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  Y  e.  CRing )
56 crngrng 16660 . . . . . . . . . . . . . . . . . . . 20  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
5755, 56syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  Y  e.  Ring )
5857ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  Y  e.  Ring )
594zrhrhm 17948 . . . . . . . . . . . . . . . . . 18  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
6058, 59syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
61 zringbas 17894 . . . . . . . . . . . . . . . . . 18  |-  ZZ  =  ( Base ` ring )
62 zringmulr 17897 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` ring )
6361, 62, 50rhmmul 16822 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  n  e.  ZZ  /\  ( N  /  ( n  gcd  N ) )  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( ( ( ZRHom `  Y ) `  n ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) ) ) )
6460, 15, 39, 63syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( ( ( ZRHom `  Y ) `  n ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) ) ) )
6564eqeq1d 2451 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  ( (
( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y ) ) )
6615, 39zmulcld 10758 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  x.  ( N  /  (
n  gcd  N )
) )  e.  ZZ )
672, 4, 51zndvds0 17988 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( n  x.  ( N  /  ( n  gcd  N ) ) )  e.  ZZ )  ->  (
( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
6845, 66, 67syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
6965, 68bitr3d 255 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
702, 4, 51zndvds0 17988 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  ( N  /  (
n  gcd  N )
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  ( n  gcd  N ) ) ) )
7145, 39, 70syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  ( n  gcd  N ) ) ) )
7253, 69, 713imtr3d 267 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  ||  ( n  x.  ( N  /  ( n  gcd  N ) ) )  ->  N  ||  ( N  / 
( n  gcd  N
) ) ) )
7343, 72mpd 15 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  ||  ( N  /  ( n  gcd  N ) ) )
7414, 25, 26divcan1d 10113 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  (
n  gcd  N )
)  =  N )
7537nncnd 10343 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  CC )
7675mulid1d 9408 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  1 )  =  ( N  /  ( n  gcd  N ) ) )
7773, 74, 763brtr4d 4327 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  (
n  gcd  N )
)  ||  ( ( N  /  ( n  gcd  N ) )  x.  1 ) )
78 1zzd 10682 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  1  e.  ZZ )
7937nnne0d 10371 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  =/=  0
)
80 dvdscmulr 13566 . . . . . . . . . . . 12  |-  ( ( ( n  gcd  N
)  e.  ZZ  /\  1  e.  ZZ  /\  (
( N  /  (
n  gcd  N )
)  e.  ZZ  /\  ( N  /  (
n  gcd  N )
)  =/=  0 ) )  ->  ( (
( N  /  (
n  gcd  N )
)  x.  ( n  gcd  N ) ) 
||  ( ( N  /  ( n  gcd  N ) )  x.  1 )  <->  ( n  gcd  N )  ||  1 ) )
8132, 78, 39, 79, 80syl112anc 1222 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( N  /  ( n  gcd  N ) )  x.  ( n  gcd  N ) )  ||  (
( N  /  (
n  gcd  N )
)  x.  1 )  <-> 
( n  gcd  N
)  ||  1 ) )
8277, 81mpbid 210 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  1 )
8315, 17gcdcld 13707 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  NN0 )
84 dvds1 13586 . . . . . . . . . . 11  |-  ( ( n  gcd  N )  e.  NN0  ->  ( ( n  gcd  N ) 
||  1  <->  ( n  gcd  N )  =  1 ) )
8583, 84syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  1 
<->  ( n  gcd  N
)  =  1 ) )
8682, 85mpbid 210 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  =  1 )
87 znunit.u . . . . . . . . . . 11  |-  U  =  (Unit `  Y )
882, 87, 4znunit 18001 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  n
)  e.  U  <->  ( n  gcd  N )  =  1 ) )
8945, 15, 88syl2anc 661 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  n )  e.  U  <->  ( n  gcd  N )  =  1 ) )
9086, 89mpbird 232 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  n
)  e.  U )
9190ex 434 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  n
)  e.  E  -> 
( ( ZRHom `  Y ) `  n
)  e.  U ) )
92 eleq1 2503 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( x  e.  E  <->  ( ( ZRHom `  Y ) `  n
)  e.  E ) )
93 eleq1 2503 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( x  e.  U  <->  ( ( ZRHom `  Y ) `  n
)  e.  U ) )
9492, 93imbi12d 320 . . . . . . 7  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( (
x  e.  E  ->  x  e.  U )  <->  ( ( ( ZRHom `  Y ) `  n
)  e.  E  -> 
( ( ZRHom `  Y ) `  n
)  e.  U ) ) )
9591, 94syl5ibrcom 222 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( x  =  ( ( ZRHom `  Y
) `  n )  ->  ( x  e.  E  ->  x  e.  U ) ) )
9695rexlimdva 2846 . . . . 5  |-  ( N  e.  NN  ->  ( E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n )  ->  (
x  e.  E  ->  x  e.  U )
) )
9796com23 78 . . . 4  |-  ( N  e.  NN  ->  (
x  e.  E  -> 
( E. n  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  n )  ->  x  e.  U ) ) )
9812, 97mpdd 40 . . 3  |-  ( N  e.  NN  ->  (
x  e.  E  ->  x  e.  U )
)
9998ssrdv 3367 . 2  |-  ( N  e.  NN  ->  E  C_  U )
1007, 87unitrrg 17370 . . 3  |-  ( Y  e.  Ring  ->  U  C_  E )
10157, 100syl 16 . 2  |-  ( N  e.  NN  ->  U  C_  E )
10299, 101eqssd 3378 1  |-  ( N  e.  NN  ->  E  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611   E.wrex 2721    C_ wss 3333   class class class wbr 4297   -->wf 5419   -onto->wfo 5421   ` cfv 5423  (class class class)co 6096   CCcc 9285   0cc0 9287   1c1 9288    x. cmul 9292    / cdiv 9998   NNcn 10327   NN0cn0 10584   ZZcz 10651    || cdivides 13540    gcd cgcd 13695   Basecbs 14179   .rcmulr 14244   0gc0g 14383   Ringcrg 16650   CRingccrg 16651  Unitcui 16736   RingHom crh 16809  RLRegcrlreg 17355  ℤringzring 17888   ZRHomczrh 17936  ℤ/nczn 17939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-tpos 6750  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-ec 7108  df-qs 7112  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-sup 7696  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-rp 10997  df-fz 11443  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-dvds 13541  df-gcd 13696  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-0g 14385  df-imas 14451  df-divs 14452  df-mnd 15420  df-mhm 15469  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-subg 15683  df-nsg 15684  df-eqg 15685  df-ghm 15750  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-cring 16653  df-oppr 16720  df-dvdsr 16738  df-unit 16739  df-invr 16769  df-rnghom 16811  df-subrg 16868  df-lmod 16955  df-lss 17019  df-lsp 17058  df-sra 17258  df-rgmod 17259  df-lidl 17260  df-rsp 17261  df-2idl 17319  df-rlreg 17359  df-cnfld 17824  df-zring 17889  df-zrh 17940  df-zn 17943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator