MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znnen Structured version   Unicode version

Theorem znnen 13803
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
znnen  |-  ZZ  ~~  NN

Proof of Theorem znnen
StepHypRef Expression
1 omelon 8059 . . . . . 6  |-  om  e.  On
2 nnenom 12054 . . . . . . 7  |-  NN  ~~  om
32ensymi 7562 . . . . . 6  |-  om  ~~  NN
4 isnumi 8323 . . . . . 6  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
51, 3, 4mp2an 672 . . . . 5  |-  NN  e.  dom  card
6 xpnum 8328 . . . . 5  |-  ( ( NN  e.  dom  card  /\  NN  e.  dom  card )  ->  ( NN  X.  NN )  e.  dom  card )
75, 5, 6mp2an 672 . . . 4  |-  ( NN 
X.  NN )  e. 
dom  card
8 subf 9818 . . . . . . 7  |-  -  :
( CC  X.  CC )
--> CC
9 ffun 5731 . . . . . . 7  |-  (  -  : ( CC  X.  CC ) --> CC  ->  Fun  -  )
108, 9ax-mp 5 . . . . . 6  |-  Fun  -
11 nnsscn 10537 . . . . . . . 8  |-  NN  C_  CC
12 xpss12 5106 . . . . . . . 8  |-  ( ( NN  C_  CC  /\  NN  C_  CC )  ->  ( NN  X.  NN )  C_  ( CC  X.  CC ) )
1311, 11, 12mp2an 672 . . . . . . 7  |-  ( NN 
X.  NN )  C_  ( CC  X.  CC )
148fdmi 5734 . . . . . . 7  |-  dom  -  =  ( CC  X.  CC )
1513, 14sseqtr4i 3537 . . . . . 6  |-  ( NN 
X.  NN )  C_  dom  -
16 fores 5802 . . . . . 6  |-  ( ( Fun  -  /\  ( NN  X.  NN )  C_  dom  -  )  ->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> (  -  " ( NN  X.  NN ) ) )
1710, 15, 16mp2an 672 . . . . 5  |-  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> (  -  " ( NN  X.  NN ) )
18 dfz2 10878 . . . . . 6  |-  ZZ  =  (  -  " ( NN  X.  NN ) )
19 foeq3 5791 . . . . . 6  |-  ( ZZ  =  (  -  "
( NN  X.  NN ) )  ->  (
(  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  <->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> (  -  "
( NN  X.  NN ) ) ) )
2018, 19ax-mp 5 . . . . 5  |-  ( (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  <->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> (  -  "
( NN  X.  NN ) ) )
2117, 20mpbir 209 . . . 4  |-  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> ZZ
22 fodomnum 8434 . . . 4  |-  ( ( NN  X.  NN )  e.  dom  card  ->  ( (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  ->  ZZ  ~<_  ( NN 
X.  NN ) ) )
237, 21, 22mp2 9 . . 3  |-  ZZ  ~<_  ( NN 
X.  NN )
24 xpnnen 13799 . . 3  |-  ( NN 
X.  NN )  ~~  NN
25 domentr 7571 . . 3  |-  ( ( ZZ  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  ZZ  ~<_  NN )
2623, 24, 25mp2an 672 . 2  |-  ZZ  ~<_  NN
27 zex 10869 . . 3  |-  ZZ  e.  _V
28 nnssz 10880 . . 3  |-  NN  C_  ZZ
29 ssdomg 7558 . . 3  |-  ( ZZ  e.  _V  ->  ( NN  C_  ZZ  ->  NN  ~<_  ZZ ) )
3027, 28, 29mp2 9 . 2  |-  NN  ~<_  ZZ
31 sbth 7634 . 2  |-  ( ( ZZ  ~<_  NN  /\  NN  ~<_  ZZ )  ->  ZZ  ~~  NN )
3226, 30, 31mp2an 672 1  |-  ZZ  ~~  NN
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1379    e. wcel 1767   _Vcvv 3113    C_ wss 3476   class class class wbr 4447   Oncon0 4878    X. cxp 4997   dom cdm 4999    |` cres 5001   "cima 5002   Fun wfun 5580   -->wf 5582   -onto->wfo 5584   omcom 6678    ~~ cen 7510    ~<_ cdom 7511   cardccrd 8312   CCcc 9486    - cmin 9801   NNcn 10532   ZZcz 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-omul 7132  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-oi 7931  df-card 8316  df-acn 8319  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079
This theorem is referenced by:  qnnen  13804  odinf  16381  odhash  16390  cygctb  16685  iscmet3  21467  dyadmbl  21744  mbfsup  21806  dya2iocct  27891
  Copyright terms: Public domain W3C validator