MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znidomb Structured version   Unicode version

Theorem znidomb 18473
Description: The ℤ/nℤ structure is a domain (and hence a field) precisely when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znidomb  |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )

Proof of Theorem znidomb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2z 10902 . . . . . 6  |-  2  e.  ZZ
21a1i 11 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  e.  ZZ )
3 nnz 10892 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
43adantr 465 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  ZZ )
5 hash2 12449 . . . . . . 7  |-  ( # `  2o )  =  2
6 isidom 17827 . . . . . . . . . . . 12  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
76simprbi 464 . . . . . . . . . . 11  |-  ( Y  e. IDomn  ->  Y  e. Domn )
8 domnnzr 17818 . . . . . . . . . . 11  |-  ( Y  e. Domn  ->  Y  e. NzRing )
97, 8syl 16 . . . . . . . . . 10  |-  ( Y  e. IDomn  ->  Y  e. NzRing )
10 eqid 2443 . . . . . . . . . . . 12  |-  ( Base `  Y )  =  (
Base `  Y )
1110isnzr2 17785 . . . . . . . . . . 11  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
1211simprbi 464 . . . . . . . . . 10  |-  ( Y  e. NzRing  ->  2o  ~<_  ( Base `  Y ) )
139, 12syl 16 . . . . . . . . 9  |-  ( Y  e. IDomn  ->  2o  ~<_  ( Base `  Y ) )
1413adantl 466 . . . . . . . 8  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2o  ~<_  ( Base `  Y
) )
15 df2o2 7146 . . . . . . . . . 10  |-  2o  =  { (/) ,  { (/) } }
16 prfi 7797 . . . . . . . . . 10  |-  { (/) ,  { (/) } }  e.  Fin
1715, 16eqeltri 2527 . . . . . . . . 9  |-  2o  e.  Fin
18 fvex 5866 . . . . . . . . 9  |-  ( Base `  Y )  e.  _V
19 hashdom 12426 . . . . . . . . 9  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  _V )  ->  (
( # `  2o )  <_  ( # `  ( Base `  Y ) )  <-> 
2o  ~<_  ( Base `  Y
) ) )
2017, 18, 19mp2an 672 . . . . . . . 8  |-  ( (
# `  2o )  <_  ( # `  ( Base `  Y ) )  <-> 
2o  ~<_  ( Base `  Y
) )
2114, 20sylibr 212 . . . . . . 7  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  (
# `  2o )  <_  ( # `  ( Base `  Y ) ) )
225, 21syl5eqbrr 4471 . . . . . 6  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  <_  ( # `  ( Base `  Y ) ) )
23 zntos.y . . . . . . . 8  |-  Y  =  (ℤ/n `  N )
2423, 10znhash 18470 . . . . . . 7  |-  ( N  e.  NN  ->  ( # `
 ( Base `  Y
) )  =  N )
2524adantr 465 . . . . . 6  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  (
# `  ( Base `  Y ) )  =  N )
2622, 25breqtrd 4461 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  <_  N )
27 eluz2 11096 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
282, 4, 26, 27syl3anbrc 1181 . . . 4  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  ( ZZ>= `  2
) )
29 nncn 10550 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
3029ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  CC )
31 nncn 10550 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  CC )
3231ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  CC )
33 nnne0 10574 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  =/=  0 )
3433ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  =/=  0 )
3530, 32, 34divcan1d 10327 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( N  /  x )  x.  x )  =  N )
3635fveq2d 5860 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( ( N  /  x )  x.  x
) )  =  ( ( ZRHom `  Y
) `  N )
)
377ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  Y  e. Domn )
38 domnring 17819 . . . . . . . . . . . 12  |-  ( Y  e. Domn  ->  Y  e.  Ring )
3937, 38syl 16 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  Y  e.  Ring )
40 eqid 2443 . . . . . . . . . . . 12  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
4140zrhrhm 18422 . . . . . . . . . . 11  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
4239, 41syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
43 simprr 757 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  ||  N
)
44 nnz 10892 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  ZZ )
4544ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  ZZ )
463ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  ZZ )
47 dvdsval2 13866 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  x  =/=  0  /\  N  e.  ZZ )  ->  (
x  ||  N  <->  ( N  /  x )  e.  ZZ ) )
4845, 34, 46, 47syl3anc 1229 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  ||  N  <->  ( N  /  x )  e.  ZZ ) )
4943, 48mpbid 210 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  x )  e.  ZZ )
50 zringbas 18368 . . . . . . . . . . 11  |-  ZZ  =  ( Base ` ring )
51 zringmulr 18371 . . . . . . . . . . 11  |-  x.  =  ( .r ` ring )
52 eqid 2443 . . . . . . . . . . 11  |-  ( .r
`  Y )  =  ( .r `  Y
)
5350, 51, 52rhmmul 17250 . . . . . . . . . 10  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  ( N  /  x
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
( N  /  x
)  x.  x ) )  =  ( ( ( ZRHom `  Y
) `  ( N  /  x ) ) ( .r `  Y ) ( ( ZRHom `  Y ) `  x
) ) )
5442, 49, 45, 53syl3anc 1229 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( ( N  /  x )  x.  x
) )  =  ( ( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) ) )
55 iddvds 13874 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  ||  N )
5646, 55syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  ||  N
)
57 nnnn0 10808 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  NN0 )
5857ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  NN0 )
59 eqid 2443 . . . . . . . . . . . 12  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
6023, 40, 59zndvds0 18462 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  N  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  N
)  =  ( 0g
`  Y )  <->  N  ||  N
) )
6158, 46, 60syl2anc 661 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  N )  =  ( 0g `  Y )  <->  N  ||  N
) )
6256, 61mpbird 232 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  N )  =  ( 0g `  Y ) )
6336, 54, 623eqtr3d 2492 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) ) ( .r `  Y ) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y ) )
6450, 10rhmf 17249 . . . . . . . . . . 11  |-  ( ( ZRHom `  Y )  e.  (ring RingHom  Y )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y
) )
6542, 64syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
6665, 49ffvelrnd 6017 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( N  /  x
) )  e.  (
Base `  Y )
)
6765, 45ffvelrnd 6017 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  x )  e.  (
Base `  Y )
)
6810, 52, 59domneq0 17820 . . . . . . . . 9  |-  ( ( Y  e. Domn  /\  (
( ZRHom `  Y
) `  ( N  /  x ) )  e.  ( Base `  Y
)  /\  ( ( ZRHom `  Y ) `  x )  e.  (
Base `  Y )
)  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y )  <-> 
( ( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) ) ) )
6937, 66, 67, 68syl3anc 1229 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y )  <-> 
( ( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) ) ) )
7063, 69mpbid 210 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  \/  ( ( ZRHom `  Y ) `  x )  =  ( 0g `  Y ) ) )
7123, 40, 59zndvds0 18462 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( N  /  x
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  x
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  x ) ) )
7258, 49, 71syl2anc 661 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  <->  N  ||  ( N  /  x ) ) )
73 nnre 10549 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  RR )
7473ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  RR )
75 nnre 10549 . . . . . . . . . . . . . 14  |-  ( x  e.  NN  ->  x  e.  RR )
7675ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  RR )
77 nngt0 10571 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  0  <  N )
7877ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  N )
79 nngt0 10571 . . . . . . . . . . . . . 14  |-  ( x  e.  NN  ->  0  <  x )
8079ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  x )
8174, 76, 78, 80divgt0d 10487 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  ( N  /  x ) )
82 elnnz 10880 . . . . . . . . . . . 12  |-  ( ( N  /  x )  e.  NN  <->  ( ( N  /  x )  e.  ZZ  /\  0  < 
( N  /  x
) ) )
8349, 81, 82sylanbrc 664 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  x )  e.  NN )
84 dvdsle 13908 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  /  x
)  e.  NN )  ->  ( N  ||  ( N  /  x
)  ->  N  <_  ( N  /  x ) ) )
8546, 83, 84syl2anc 661 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  ( N  /  x
)  ->  N  <_  ( N  /  x ) ) )
86 1red 9614 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  1  e.  RR )
87 0lt1 10081 . . . . . . . . . . . . 13  |-  0  <  1
8887a1i 11 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  1 )
89 lediv2 10441 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( 1  e.  RR  /\  0  <  1 )  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( x  <_  1  <->  ( N  /  1 )  <_  ( N  /  x ) ) )
9076, 80, 86, 88, 74, 78, 89syl222anc 1245 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  <_  1  <->  ( N  / 
1 )  <_  ( N  /  x ) ) )
91 nnle1eq1 10570 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  (
x  <_  1  <->  x  = 
1 ) )
9291ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  <_  1  <->  x  =  1
) )
9330div1d 10318 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  1 )  =  N )
9493breq1d 4447 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( N  /  1 )  <_ 
( N  /  x
)  <->  N  <_  ( N  /  x ) ) )
9590, 92, 943bitr3rd 284 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  <_  ( N  /  x
)  <->  x  =  1
) )
9685, 95sylibd 214 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  ( N  /  x
)  ->  x  = 
1 ) )
9772, 96sylbid 215 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  ->  x  = 
1 ) )
9823, 40, 59zndvds0 18462 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  x
)  =  ( 0g
`  Y )  <->  N  ||  x
) )
9958, 45, 98syl2anc 661 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y )  <->  N  ||  x
) )
100 nnnn0 10808 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN0 )
101100ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  NN0 )
102 dvdseq 13910 . . . . . . . . . . 11  |-  ( ( ( x  e.  NN0  /\  N  e.  NN0 )  /\  ( x  ||  N  /\  N  ||  x ) )  ->  x  =  N )
103102expr 615 . . . . . . . . . 10  |-  ( ( ( x  e.  NN0  /\  N  e.  NN0 )  /\  x  ||  N )  ->  ( N  ||  x  ->  x  =  N ) )
104101, 58, 43, 103syl21anc 1228 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  x  ->  x  =  N ) )
10599, 104sylbid 215 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y )  ->  x  =  N ) )
10697, 105orim12d 838 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) )  -> 
( x  =  1  \/  x  =  N ) ) )
10770, 106mpd 15 . . . . . 6  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  =  1  \/  x  =  N ) )
108107expr 615 . . . . 5  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  x  e.  NN )  ->  ( x  ||  N  ->  ( x  =  1  \/  x  =  N ) ) )
109108ralrimiva 2857 . . . 4  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  A. x  e.  NN  (
x  ||  N  ->  ( x  =  1  \/  x  =  N ) ) )
110 isprm2 14102 . . . 4  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. x  e.  NN  ( x  ||  N  -> 
( x  =  1  \/  x  =  N ) ) ) )
11128, 109, 110sylanbrc 664 . . 3  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  Prime )
112111ex 434 . 2  |-  ( N  e.  NN  ->  ( Y  e. IDomn  ->  N  e. 
Prime ) )
11323znfld 18472 . . 3  |-  ( N  e.  Prime  ->  Y  e. Field
)
114 fldidom 17828 . . 3  |-  ( Y  e. Field  ->  Y  e. IDomn )
115113, 114syl 16 . 2  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
116112, 115impbid1 203 1  |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   _Vcvv 3095   (/)c0 3770   {csn 4014   {cpr 4016   class class class wbr 4437   -->wf 5574   ` cfv 5578  (class class class)co 6281   2oc2o 7126    ~<_ cdom 7516   Fincfn 7518   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    x. cmul 9500    < clt 9631    <_ cle 9632    / cdiv 10212   NNcn 10542   2c2 10591   NN0cn0 10801   ZZcz 10870   ZZ>=cuz 11090   #chash 12384    || cdvds 13863   Primecprime 14094   Basecbs 14509   .rcmulr 14575   0gc0g 14714   Ringcrg 17072   CRingccrg 17073   RingHom crh 17235  Fieldcfield 17271  NzRingcnzr 17779  Domncdomn 17802  IDomncidom 17803  ℤringzring 18362   ZRHomczrh 18410  ℤ/nczn 18413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6957  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-rp 11230  df-fz 11682  df-fzo 11804  df-fl 11908  df-mod 11976  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-dvds 13864  df-gcd 14022  df-prm 14095  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-0g 14716  df-imas 14782  df-qus 14783  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-mhm 15840  df-grp 15931  df-minusg 15932  df-sbg 15933  df-mulg 15934  df-subg 16072  df-nsg 16073  df-eqg 16074  df-ghm 16139  df-cmn 16674  df-abl 16675  df-mgp 17016  df-ur 17028  df-ring 17074  df-cring 17075  df-oppr 17146  df-dvdsr 17164  df-unit 17165  df-invr 17195  df-rnghom 17238  df-drng 17272  df-field 17273  df-subrg 17301  df-lmod 17388  df-lss 17453  df-lsp 17492  df-sra 17692  df-rgmod 17693  df-lidl 17694  df-rsp 17695  df-2idl 17754  df-nzr 17780  df-rlreg 17805  df-domn 17806  df-idom 17807  df-cnfld 18295  df-zring 18363  df-zrh 18414  df-zn 18417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator