MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znfi Structured version   Unicode version

Theorem znfi 18725
Description: The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
znhash.1  |-  B  =  ( Base `  Y
)
Assertion
Ref Expression
znfi  |-  ( N  e.  NN  ->  B  e.  Fin )

Proof of Theorem znfi
StepHypRef Expression
1 zntos.y . . . 4  |-  Y  =  (ℤ/n `  N )
2 znhash.1 . . . 4  |-  B  =  ( Base `  Y
)
31, 2znhash 18724 . . 3  |-  ( N  e.  NN  ->  ( # `
 B )  =  N )
4 nnnn0 10823 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
53, 4eqeltrd 2545 . 2  |-  ( N  e.  NN  ->  ( # `
 B )  e. 
NN0 )
6 fvex 5882 . . . 4  |-  ( Base `  Y )  e.  _V
72, 6eqeltri 2541 . . 3  |-  B  e. 
_V
8 hashclb 12433 . . 3  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
97, 8ax-mp 5 . 2  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
105, 9sylibr 212 1  |-  ( N  e.  NN  ->  B  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1395    e. wcel 1819   _Vcvv 3109   ` cfv 5594   Fincfn 7535   NNcn 10556   NN0cn0 10816   #chash 12408   Basecbs 14644  ℤ/nczn 18667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-rp 11246  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-hash 12409  df-dvds 13999  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-0g 14859  df-imas 14925  df-qus 14926  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-grp 16184  df-minusg 16185  df-sbg 16186  df-mulg 16187  df-subg 16325  df-nsg 16326  df-eqg 16327  df-ghm 16392  df-cmn 16927  df-abl 16928  df-mgp 17269  df-ur 17281  df-ring 17327  df-cring 17328  df-oppr 17399  df-dvdsr 17417  df-rnghom 17491  df-subrg 17554  df-lmod 17641  df-lss 17706  df-lsp 17745  df-sra 17945  df-rgmod 17946  df-lidl 17947  df-rsp 17948  df-2idl 18007  df-cnfld 18548  df-zring 18616  df-zrh 18668  df-zn 18671
This theorem is referenced by:  znfld  18726  dchrfi  23656  dchrabs  23661  dchrptlem1  23665  dchrptlem2  23666  dchrpt  23668  dchrsum  23670  dchrhash  23672  isnumbasgrplem3  31237
  Copyright terms: Public domain W3C validator