MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znf1o Structured version   Unicode version

Theorem znf1o 17943
Description: The function  F enumerates all equivalence classes in ℤ/nℤ for each  n. When  n  = 
0,  ZZ  /  0 ZZ  =  ZZ  /  {
0 }  ~~  ZZ so we let  W  =  ZZ; otherwise  W  =  { 0 , 
... ,  n  - 
1 } enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znf1o.y  |-  Y  =  (ℤ/n `  N )
znf1o.b  |-  B  =  ( Base `  Y
)
znf1o.f  |-  F  =  ( ( ZRHom `  Y )  |`  W )
znf1o.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
Assertion
Ref Expression
znf1o  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> B )

Proof of Theorem znf1o
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znf1o.y . . . . . . 7  |-  Y  =  (ℤ/n `  N )
21zncrng 17936 . . . . . 6  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
3 crngrng 16645 . . . . . 6  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
4 eqid 2441 . . . . . . 7  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
54zrhrhm 17902 . . . . . 6  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
6 zringbas 17848 . . . . . . 7  |-  ZZ  =  ( Base ` ring )
7 znf1o.b . . . . . . 7  |-  B  =  ( Base `  Y
)
86, 7rhmf 16804 . . . . . 6  |-  ( ( ZRHom `  Y )  e.  (ring RingHom  Y )  ->  ( ZRHom `  Y ) : ZZ --> B )
92, 3, 5, 84syl 21 . . . . 5  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ --> B )
10 znf1o.w . . . . . 6  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
11 sseq1 3374 . . . . . . 7  |-  ( ZZ  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  ->  ( ZZ  C_  ZZ  <->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  C_  ZZ ) )
12 sseq1 3374 . . . . . . 7  |-  ( ( 0..^ N )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )  ->  ( (
0..^ N )  C_  ZZ 
<->  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )  C_  ZZ )
)
13 ssid 3372 . . . . . . 7  |-  ZZ  C_  ZZ
14 elfzoelz 11549 . . . . . . . 8  |-  ( x  e.  ( 0..^ N )  ->  x  e.  ZZ )
1514ssriv 3357 . . . . . . 7  |-  ( 0..^ N )  C_  ZZ
1611, 12, 13, 15keephyp 3851 . . . . . 6  |-  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  C_  ZZ
1710, 16eqsstri 3383 . . . . 5  |-  W  C_  ZZ
18 fssres 5575 . . . . 5  |-  ( ( ( ZRHom `  Y
) : ZZ --> B  /\  W  C_  ZZ )  -> 
( ( ZRHom `  Y )  |`  W ) : W --> B )
199, 17, 18sylancl 657 . . . 4  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  W ) : W --> B )
20 znf1o.f . . . . 5  |-  F  =  ( ( ZRHom `  Y )  |`  W )
2120feq1i 5548 . . . 4  |-  ( F : W --> B  <->  ( ( ZRHom `  Y )  |`  W ) : W --> B )
2219, 21sylibr 212 . . 3  |-  ( N  e.  NN0  ->  F : W
--> B )
2320fveq1i 5689 . . . . . . . 8  |-  ( F `
 x )  =  ( ( ( ZRHom `  Y )  |`  W ) `
 x )
24 fvres 5701 . . . . . . . . 9  |-  ( x  e.  W  ->  (
( ( ZRHom `  Y )  |`  W ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
2524ad2antrl 722 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y )  |`  W ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
2623, 25syl5eq 2485 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( F `  x )  =  ( ( ZRHom `  Y ) `  x
) )
2720fveq1i 5689 . . . . . . . 8  |-  ( F `
 y )  =  ( ( ( ZRHom `  Y )  |`  W ) `
 y )
28 fvres 5701 . . . . . . . . 9  |-  ( y  e.  W  ->  (
( ( ZRHom `  Y )  |`  W ) `
 y )  =  ( ( ZRHom `  Y ) `  y
) )
2928ad2antll 723 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y )  |`  W ) `
 y )  =  ( ( ZRHom `  Y ) `  y
) )
3027, 29syl5eq 2485 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( F `  y )  =  ( ( ZRHom `  Y ) `  y
) )
3126, 30eqeq12d 2455 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( ( ZRHom `  Y ) `  x )  =  ( ( ZRHom `  Y
) `  y )
) )
32 simpl 454 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN0 )
33 simprl 750 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  W )
3417, 33sseldi 3351 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
35 simprr 751 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  W )
3617, 35sseldi 3351 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
371, 4zndvds 17941 . . . . . . 7  |-  ( ( N  e.  NN0  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( ( ZRHom `  Y ) `  x
)  =  ( ( ZRHom `  Y ) `  y )  <->  N  ||  (
x  -  y ) ) )
3832, 34, 36, 37syl3anc 1213 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y ) `  x
)  =  ( ( ZRHom `  Y ) `  y )  <->  N  ||  (
x  -  y ) ) )
39 elnn0 10577 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
40 simpl 454 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN )
41 simprl 750 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  W )
4217, 41sseldi 3351 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
43 simprr 751 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  W )
4417, 43sseldi 3351 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
45 moddvds 13538 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  N  ||  (
x  -  y ) ) )
4640, 42, 44, 45syl3anc 1213 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  N  ||  (
x  -  y ) ) )
4742zred 10743 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  RR )
48 nnrp 10996 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  RR+ )
4948adantr 462 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  RR+ )
50 nnne0 10350 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  =/=  0 )
51 ifnefalse 3798 . . . . . . . . . . . . . . . 16  |-  ( N  =/=  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
5250, 51syl 16 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
5310, 52syl5eq 2485 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  W  =  ( 0..^ N ) )
5453adantr 462 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  W  =  ( 0..^ N ) )
5541, 54eleqtrd 2517 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ( 0..^ N ) )
56 elfzole1 11556 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  0  <_  x )
5755, 56syl 16 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  0  <_  x )
58 elfzolt2 11557 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  x  <  N )
5955, 58syl 16 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  <  N )
60 modid 11728 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  N  e.  RR+ )  /\  ( 0  <_  x  /\  x  <  N ) )  ->  ( x  mod  N )  =  x )
6147, 49, 57, 59, 60syl22anc 1214 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
x  mod  N )  =  x )
6244zred 10743 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  RR )
6343, 54eleqtrd 2517 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ( 0..^ N ) )
64 elfzole1 11556 . . . . . . . . . . . 12  |-  ( y  e.  ( 0..^ N )  ->  0  <_  y )
6563, 64syl 16 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  0  <_  y )
66 elfzolt2 11557 . . . . . . . . . . . 12  |-  ( y  e.  ( 0..^ N )  ->  y  <  N )
6763, 66syl 16 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  <  N )
68 modid 11728 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  N  e.  RR+ )  /\  ( 0  <_  y  /\  y  <  N ) )  ->  ( y  mod  N )  =  y )
6962, 49, 65, 67, 68syl22anc 1214 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
y  mod  N )  =  y )
7061, 69eqeq12d 2455 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  x  =  y ) )
7146, 70bitr3d 255 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
72 simpl 454 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  =  0 )
7372breq1d 4299 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  0  ||  ( x  -  y
) ) )
74 id 22 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  N  =  0 )
75 0nn0 10590 . . . . . . . . . . . . 13  |-  0  e.  NN0
7674, 75syl6eqel 2529 . . . . . . . . . . . 12  |-  ( N  =  0  ->  N  e.  NN0 )
7776, 34sylan 468 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
7876, 36sylan 468 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
7977, 78zsubcld 10748 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
x  -  y )  e.  ZZ )
80 0dvds 13549 . . . . . . . . . 10  |-  ( ( x  -  y )  e.  ZZ  ->  (
0  ||  ( x  -  y )  <->  ( x  -  y )  =  0 ) )
8179, 80syl 16 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
0  ||  ( x  -  y )  <->  ( x  -  y )  =  0 ) )
8277zcnd 10744 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  CC )
8378zcnd 10744 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  CC )
8482, 83subeq0ad 9725 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  -  y
)  =  0  <->  x  =  y ) )
8573, 81, 843bitrd 279 . . . . . . . 8  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
8671, 85jaoian 777 . . . . . . 7  |-  ( ( ( N  e.  NN  \/  N  =  0
)  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( N  ||  (
x  -  y )  <-> 
x  =  y ) )
8739, 86sylanb 469 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
8831, 38, 873bitrd 279 . . . . 5  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  x  =  y ) )
8988biimpd 207 . . . 4  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
9089ralrimivva 2806 . . 3  |-  ( N  e.  NN0  ->  A. x  e.  W  A. y  e.  W  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
91 dff13 5968 . . 3  |-  ( F : W -1-1-> B  <->  ( F : W --> B  /\  A. x  e.  W  A. y  e.  W  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
9222, 90, 91sylanbrc 659 . 2  |-  ( N  e.  NN0  ->  F : W -1-1-> B )
93 zmodfzo 11726 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  N  e.  NN )  ->  ( z  mod  N
)  e.  ( 0..^ N ) )
9493ancoms 450 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  ( 0..^ N ) )
9553adantr 462 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  W  =  ( 0..^ N ) )
9694, 95eleqtrrd 2518 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  W )
97 zre 10646 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
98 modabs2 11738 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  N  e.  RR+ )  -> 
( ( z  mod 
N )  mod  N
)  =  ( z  mod  N ) )
9997, 48, 98syl2anr 475 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( z  mod 
N )  mod  N
)  =  ( z  mod  N ) )
100 simpl 454 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  NN )
10115, 94sseldi 3351 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  ZZ )
102 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  z  e.  ZZ )
103 moddvds 13538 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( z  mod  N
)  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( ( z  mod  N )  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( (
z  mod  N )  -  z ) ) )
104100, 101, 102, 103syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( z  mod  N )  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( (
z  mod  N )  -  z ) ) )
10599, 104mpbid 210 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  ||  ( ( z  mod  N )  -  z ) )
106 nnnn0 10582 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
107106adantr 462 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  NN0 )
1081, 4zndvds 17941 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( z  mod  N
)  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z )  <->  N  ||  (
( z  mod  N
)  -  z ) ) )
109107, 101, 102, 108syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z )  <->  N  ||  (
( z  mod  N
)  -  z ) ) )
110105, 109mpbird 232 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z ) )
111110eqcomd 2446 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  ( z  mod  N
) ) )
112 fveq2 5688 . . . . . . . . . . . 12  |-  ( y  =  ( z  mod 
N )  ->  (
( ZRHom `  Y
) `  y )  =  ( ( ZRHom `  Y ) `  (
z  mod  N )
) )
113112eqeq2d 2452 . . . . . . . . . . 11  |-  ( y  =  ( z  mod 
N )  ->  (
( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  ( z  mod  N ) ) ) )
114113rspcev 3070 . . . . . . . . . 10  |-  ( ( ( z  mod  N
)  e.  W  /\  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  ( z  mod  N
) ) )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
11596, 111, 114syl2anc 656 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
116 iftrue 3794 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ZZ )
117116eleq2d 2508 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
z  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  <->  z  e.  ZZ ) )
118117biimpar 482 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  z  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )
119118, 10syl6eleqr 2532 . . . . . . . . . 10  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  z  e.  W
)
120 eqidd 2442 . . . . . . . . . 10  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  z ) )
121 fveq2 5688 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
( ZRHom `  Y
) `  y )  =  ( ( ZRHom `  Y ) `  z
) )
122121eqeq2d 2452 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  z )
) )
123122rspcev 3070 . . . . . . . . . 10  |-  ( ( z  e.  W  /\  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  z ) )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
124119, 120, 123syl2anc 656 . . . . . . . . 9  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
125115, 124jaoian 777 . . . . . . . 8  |-  ( ( ( N  e.  NN  \/  N  =  0
)  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
)
12639, 125sylanb 469 . . . . . . 7  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
12727, 28syl5eq 2485 . . . . . . . . 9  |-  ( y  e.  W  ->  ( F `  y )  =  ( ( ZRHom `  Y ) `  y
) )
128127eqeq2d 2452 . . . . . . . 8  |-  ( y  e.  W  ->  (
( ( ZRHom `  Y ) `  z
)  =  ( F `
 y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
) )
129128rexbiia 2746 . . . . . . 7  |-  ( E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y )  <->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
)
130126, 129sylibr 212 . . . . . 6  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( F `
 y ) )
131130ralrimiva 2797 . . . . 5  |-  ( N  e.  NN0  ->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( F `
 y ) )
1321, 7, 4znzrhfo 17939 . . . . . 6  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto-> B )
133 fofn 5619 . . . . . 6  |-  ( ( ZRHom `  Y ) : ZZ -onto-> B  ->  ( ZRHom `  Y )  Fn  ZZ )
134 eqeq1 2447 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( F `  y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( F `  y ) ) )
135134rexbidv 2734 . . . . . . 7  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( E. y  e.  W  x  =  ( F `  y )  <->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( F `  y ) ) )
136135ralrn 5843 . . . . . 6  |-  ( ( ZRHom `  Y )  Fn  ZZ  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y ) ) )
137132, 133, 1363syl 20 . . . . 5  |-  ( N  e.  NN0  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y ) ) )
138131, 137mpbird 232 . . . 4  |-  ( N  e.  NN0  ->  A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y ) )
139 forn 5620 . . . . . 6  |-  ( ( ZRHom `  Y ) : ZZ -onto-> B  ->  ran  ( ZRHom `  Y )  =  B )
140132, 139syl 16 . . . . 5  |-  ( N  e.  NN0  ->  ran  ( ZRHom `  Y )  =  B )
141140raleqdv 2921 . . . 4  |-  ( N  e.  NN0  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) ) )
142138, 141mpbid 210 . . 3  |-  ( N  e.  NN0  ->  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) )
143 dffo3 5855 . . 3  |-  ( F : W -onto-> B  <->  ( F : W --> B  /\  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) ) )
14422, 142, 143sylanbrc 659 . 2  |-  ( N  e.  NN0  ->  F : W -onto-> B )
145 df-f1o 5422 . 2  |-  ( F : W -1-1-onto-> B  <->  ( F : W -1-1-> B  /\  F : W -onto-> B ) )
14692, 144, 145sylanbrc 659 1  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714    C_ wss 3325   ifcif 3788   class class class wbr 4289   ran crn 4837    |` cres 4838    Fn wfn 5410   -->wf 5411   -1-1->wf1 5412   -onto->wfo 5413   -1-1-onto->wf1o 5414   ` cfv 5415  (class class class)co 6090   RRcr 9277   0cc0 9278    < clt 9414    <_ cle 9415    - cmin 9591   NNcn 10318   NN0cn0 10575   ZZcz 10642   RR+crp 10987  ..^cfzo 11544    mod cmo 11704    || cdivides 13531   Basecbs 14170   Ringcrg 16635   CRingccrg 16636   RingHom crh 16794  ℤringzring 17842   ZRHomczrh 17890  ℤ/nczn 17893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-dvds 13532  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-0g 14376  df-imas 14442  df-divs 14443  df-mnd 15411  df-mhm 15460  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-nsg 15672  df-eqg 15673  df-ghm 15738  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-oppr 16705  df-dvdsr 16723  df-rnghom 16796  df-subrg 16843  df-lmod 16930  df-lss 16992  df-lsp 17031  df-sra 17231  df-rgmod 17232  df-lidl 17233  df-rsp 17234  df-2idl 17292  df-cnfld 17778  df-zring 17843  df-zrh 17894  df-zn 17897
This theorem is referenced by:  zzngim  17944  znleval  17946  zntoslem  17948  znhash  17950  znunithash  17956  dchrisumlem1  22697
  Copyright terms: Public domain W3C validator