Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem Structured version   Unicode version

Theorem zlmodzxzldeplem 38590
Description: A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z  |-  Z  =  (ring freeLMod  { 0 ,  1 } )
zlmodzxzldep.a  |-  A  =  { <. 0 ,  3
>. ,  <. 1 ,  6 >. }
zlmodzxzldep.b  |-  B  =  { <. 0 ,  2
>. ,  <. 1 ,  4 >. }
Assertion
Ref Expression
zlmodzxzldeplem  |-  A  =/= 
B

Proof of Theorem zlmodzxzldeplem
StepHypRef Expression
1 opex 4654 . . . . 5  |-  <. 0 ,  3 >.  e.  _V
2 opex 4654 . . . . 5  |-  <. 1 ,  6 >.  e.  _V
31, 2pm3.2i 453 . . . 4  |-  ( <.
0 ,  3 >.  e.  _V  /\  <. 1 ,  6 >.  e.  _V )
4 opex 4654 . . . . 5  |-  <. 0 ,  2 >.  e.  _V
5 opex 4654 . . . . 5  |-  <. 1 ,  4 >.  e.  _V
64, 5pm3.2i 453 . . . 4  |-  ( <.
0 ,  2 >.  e.  _V  /\  <. 1 ,  4 >.  e.  _V )
73, 6pm3.2i 453 . . 3  |-  ( (
<. 0 ,  3
>.  e.  _V  /\  <. 1 ,  6 >.  e. 
_V )  /\  ( <. 0 ,  2 >.  e.  _V  /\  <. 1 ,  4 >.  e.  _V ) )
8 2re 10566 . . . . . . . 8  |-  2  e.  RR
9 2lt3 10664 . . . . . . . 8  |-  2  <  3
108, 9gtneii 9648 . . . . . . 7  |-  3  =/=  2
1110olci 389 . . . . . 6  |-  ( 0  =/=  0  \/  3  =/=  2 )
12 c0ex 9540 . . . . . . 7  |-  0  e.  _V
13 3ex 10572 . . . . . . 7  |-  3  e.  _V
1412, 13opthne 4670 . . . . . 6  |-  ( <.
0 ,  3 >.  =/=  <. 0 ,  2
>. 
<->  ( 0  =/=  0  \/  3  =/=  2
) )
1511, 14mpbir 209 . . . . 5  |-  <. 0 ,  3 >.  =/=  <. 0 ,  2 >.
16 0ne1 10564 . . . . . . 7  |-  0  =/=  1
1716orci 388 . . . . . 6  |-  ( 0  =/=  1  \/  3  =/=  4 )
1812, 13opthne 4670 . . . . . 6  |-  ( <.
0 ,  3 >.  =/=  <. 1 ,  4
>. 
<->  ( 0  =/=  1  \/  3  =/=  4
) )
1917, 18mpbir 209 . . . . 5  |-  <. 0 ,  3 >.  =/=  <. 1 ,  4 >.
2015, 19pm3.2i 453 . . . 4  |-  ( <.
0 ,  3 >.  =/=  <. 0 ,  2
>.  /\  <. 0 ,  3
>.  =/=  <. 1 ,  4
>. )
2120orci 388 . . 3  |-  ( (
<. 0 ,  3
>.  =/=  <. 0 ,  2
>.  /\  <. 0 ,  3
>.  =/=  <. 1 ,  4
>. )  \/  ( <. 1 ,  6 >.  =/=  <. 0 ,  2
>.  /\  <. 1 ,  6
>.  =/=  <. 1 ,  4
>. ) )
22 prneimg 4152 . . 3  |-  ( ( ( <. 0 ,  3
>.  e.  _V  /\  <. 1 ,  6 >.  e. 
_V )  /\  ( <. 0 ,  2 >.  e.  _V  /\  <. 1 ,  4 >.  e.  _V ) )  ->  (
( ( <. 0 ,  3 >.  =/=  <. 0 ,  2 >.  /\ 
<. 0 ,  3
>.  =/=  <. 1 ,  4
>. )  \/  ( <. 1 ,  6 >.  =/=  <. 0 ,  2
>.  /\  <. 1 ,  6
>.  =/=  <. 1 ,  4
>. ) )  ->  { <. 0 ,  3 >. , 
<. 1 ,  6
>. }  =/=  { <. 0 ,  2 >. , 
<. 1 ,  4
>. } ) )
237, 21, 22mp2 9 . 2  |-  { <. 0 ,  3 >. , 
<. 1 ,  6
>. }  =/=  { <. 0 ,  2 >. , 
<. 1 ,  4
>. }
24 zlmodzxzldep.a . . 3  |-  A  =  { <. 0 ,  3
>. ,  <. 1 ,  6 >. }
25 zlmodzxzldep.b . . 3  |-  B  =  { <. 0 ,  2
>. ,  <. 1 ,  4 >. }
2624, 25neeq12i 2692 . 2  |-  ( A  =/=  B  <->  { <. 0 ,  3 >. ,  <. 1 ,  6 >. }  =/=  { <. 0 ,  2 >. ,  <. 1 ,  4 >. } )
2723, 26mpbir 209 1  |-  A  =/= 
B
Colors of variables: wff setvar class
Syntax hints:    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   _Vcvv 3058   {cpr 3973   <.cop 3977  (class class class)co 6234   0cc0 9442   1c1 9443   2c2 10546   3c3 10547   4c4 10548   6c6 10550  ℤringzring 18700   freeLMod cfrlm 18967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-po 4743  df-so 4744  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-2 10555  df-3 10556
This theorem is referenced by:  zlmodzxzldeplem1  38592  zlmodzxzldeplem3  38594  zlmodzxzldeplem4  38595  ldepsnlinc  38600
  Copyright terms: Public domain W3C validator