MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep6 Structured version   Unicode version

Theorem zfrep6 6771
Description: A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4543 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 4533. (Contributed by NM, 10-Oct-2003.)
Assertion
Ref Expression
zfrep6  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, w    x, y, z, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem zfrep6
StepHypRef Expression
1 euex 2290 . . . . . . 7  |-  ( E! y ph  ->  E. y ph )
21ralimi 2818 . . . . . 6  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y ph )
3 rabid2 3006 . . . . . 6  |-  ( z  =  { x  e.  z  |  E. y ph }  <->  A. x  e.  z  E. y ph )
42, 3sylibr 215 . . . . 5  |-  ( A. x  e.  z  E! y ph  ->  z  =  { x  e.  z  |  E. y ph }
)
5 19.42v 1823 . . . . . . 7  |-  ( E. y ( x  e.  z  /\  ph )  <->  ( x  e.  z  /\  E. y ph ) )
65abbii 2556 . . . . . 6  |-  { x  |  E. y ( x  e.  z  /\  ph ) }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
7 dmopab 5060 . . . . . 6  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  |  E. y ( x  e.  z  /\  ph ) }
8 df-rab 2784 . . . . . 6  |-  { x  e.  z  |  E. y ph }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
96, 7, 83eqtr4i 2461 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  e.  z  |  E. y ph }
104, 9syl6reqr 2482 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  z )
11 vex 3084 . . . 4  |-  z  e. 
_V
1210, 11syl6eqel 2518 . . 3  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
13 eumo 2295 . . . . . . 7  |-  ( E! y ph  ->  E* y ph )
1413imim2i 16 . . . . . 6  |-  ( ( x  e.  z  ->  E! y ph )  -> 
( x  e.  z  ->  E* y ph ) )
15 moanimv 2327 . . . . . 6  |-  ( E* y ( x  e.  z  /\  ph )  <->  ( x  e.  z  ->  E* y ph ) )
1614, 15sylibr 215 . . . . 5  |-  ( ( x  e.  z  ->  E! y ph )  ->  E* y ( x  e.  z  /\  ph )
)
1716alimi 1680 . . . 4  |-  ( A. x ( x  e.  z  ->  E! y ph )  ->  A. x E* y ( x  e.  z  /\  ph )
)
18 df-ral 2780 . . . 4  |-  ( A. x  e.  z  E! y ph  <->  A. x ( x  e.  z  ->  E! y ph ) )
19 funopab 5630 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<-> 
A. x E* y
( x  e.  z  /\  ph ) )
2017, 18, 193imtr4i 269 . . 3  |-  ( A. x  e.  z  E! y ph  ->  Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
21 funrnex 6770 . . 3  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
)
2212, 20, 21sylc 62 . 2  |-  ( A. x  e.  z  E! y ph  ->  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
23 nfra1 2806 . . 3  |-  F/ x A. x  e.  z  E! y ph
2410eleq2d 2492 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  x  e.  z ) )
25 opabid 4723 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<->  ( x  e.  z  /\  ph ) )
26 vex 3084 . . . . . . . . . 10  |-  x  e. 
_V
27 vex 3084 . . . . . . . . . 10  |-  y  e. 
_V
2826, 27opelrn 5081 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
2925, 28sylbir 216 . . . . . . . 8  |-  ( ( x  e.  z  /\  ph )  ->  y  e.  ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } )
3029ex 435 . . . . . . 7  |-  ( x  e.  z  ->  ( ph  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ) )
3130impac 625 . . . . . 6  |-  ( ( x  e.  z  /\  ph )  ->  ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3231eximi 1702 . . . . 5  |-  ( E. y ( x  e.  z  /\  ph )  ->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
337abeq2i 2549 . . . . 5  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  E. y
( x  e.  z  /\  ph ) )
34 df-rex 2781 . . . . 5  |-  ( E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  <->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3532, 33, 343imtr4i 269 . . . 4  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
3624, 35syl6bir 232 . . 3  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  z  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
3723, 36ralrimi 2825 . 2  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
38 nfopab1 4487 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
3938nfrn 5092 . . . . 5  |-  F/_ x ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4039nfeq2 2601 . . . 4  |-  F/ x  w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }
41 nfcv 2584 . . . . 5  |-  F/_ y
w
42 nfopab2 4488 . . . . . 6  |-  F/_ y { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4342nfrn 5092 . . . . 5  |-  F/_ y ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4441, 43rexeqf 3022 . . . 4  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( E. y  e.  w  ph  <->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph ) )
4540, 44ralbid 2859 . . 3  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( A. x  e.  z  E. y  e.  w  ph  <->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
4645spcegv 3167 . 2  |-  ( ran 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( A. x  e.  z  E. y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  ->  E. w A. x  e.  z  E. y  e.  w  ph ) )
4722, 37, 46sylc 62 1  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1659    e. wcel 1868   E!weu 2265   E*wmo 2266   {cab 2407   A.wral 2775   E.wrex 2776   {crab 2779   _Vcvv 3081   <.cop 4002   {copab 4478   dom cdm 4849   ran crn 4850   Fun wfun 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605
This theorem is referenced by:  bnj865  29729
  Copyright terms: Public domain W3C validator