MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep6 Structured version   Unicode version

Theorem zfrep6 6645
Description: A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4511 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 4501. (Contributed by NM, 10-Oct-2003.)
Assertion
Ref Expression
zfrep6  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, w    x, y, z, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem zfrep6
StepHypRef Expression
1 euex 2288 . . . . . . 7  |-  ( E! y ph  ->  E. y ph )
21ralimi 2811 . . . . . 6  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y ph )
3 rabid2 2994 . . . . . 6  |-  ( z  =  { x  e.  z  |  E. y ph }  <->  A. x  e.  z  E. y ph )
42, 3sylibr 212 . . . . 5  |-  ( A. x  e.  z  E! y ph  ->  z  =  { x  e.  z  |  E. y ph }
)
5 19.42v 1933 . . . . . . 7  |-  ( E. y ( x  e.  z  /\  ph )  <->  ( x  e.  z  /\  E. y ph ) )
65abbii 2585 . . . . . 6  |-  { x  |  E. y ( x  e.  z  /\  ph ) }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
7 dmopab 5148 . . . . . 6  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  |  E. y ( x  e.  z  /\  ph ) }
8 df-rab 2804 . . . . . 6  |-  { x  e.  z  |  E. y ph }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
96, 7, 83eqtr4i 2490 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  e.  z  |  E. y ph }
104, 9syl6reqr 2511 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  z )
11 vex 3071 . . . 4  |-  z  e. 
_V
1210, 11syl6eqel 2547 . . 3  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
13 eumo 2293 . . . . . . 7  |-  ( E! y ph  ->  E* y ph )
1413imim2i 14 . . . . . 6  |-  ( ( x  e.  z  ->  E! y ph )  -> 
( x  e.  z  ->  E* y ph ) )
15 moanimv 2341 . . . . . 6  |-  ( E* y ( x  e.  z  /\  ph )  <->  ( x  e.  z  ->  E* y ph ) )
1614, 15sylibr 212 . . . . 5  |-  ( ( x  e.  z  ->  E! y ph )  ->  E* y ( x  e.  z  /\  ph )
)
1716alimi 1605 . . . 4  |-  ( A. x ( x  e.  z  ->  E! y ph )  ->  A. x E* y ( x  e.  z  /\  ph )
)
18 df-ral 2800 . . . 4  |-  ( A. x  e.  z  E! y ph  <->  A. x ( x  e.  z  ->  E! y ph ) )
19 funopab 5549 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<-> 
A. x E* y
( x  e.  z  /\  ph ) )
2017, 18, 193imtr4i 266 . . 3  |-  ( A. x  e.  z  E! y ph  ->  Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
21 funrnex 6644 . . 3  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
)
2212, 20, 21sylc 60 . 2  |-  ( A. x  e.  z  E! y ph  ->  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
23 nfra1 2875 . . 3  |-  F/ x A. x  e.  z  E! y ph
2410eleq2d 2521 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  x  e.  z ) )
25 opabid 4694 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<->  ( x  e.  z  /\  ph ) )
26 vex 3071 . . . . . . . . . 10  |-  x  e. 
_V
27 vex 3071 . . . . . . . . . 10  |-  y  e. 
_V
2826, 27opelrn 5169 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
2925, 28sylbir 213 . . . . . . . 8  |-  ( ( x  e.  z  /\  ph )  ->  y  e.  ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } )
3029ex 434 . . . . . . 7  |-  ( x  e.  z  ->  ( ph  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ) )
3130impac 621 . . . . . 6  |-  ( ( x  e.  z  /\  ph )  ->  ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3231eximi 1626 . . . . 5  |-  ( E. y ( x  e.  z  /\  ph )  ->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
337abeq2i 2578 . . . . 5  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  E. y
( x  e.  z  /\  ph ) )
34 df-rex 2801 . . . . 5  |-  ( E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  <->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3532, 33, 343imtr4i 266 . . . 4  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
3624, 35syl6bir 229 . . 3  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  z  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
3723, 36ralrimi 2815 . 2  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
38 nfopab1 4456 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
3938nfrn 5180 . . . . 5  |-  F/_ x ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4039nfeq2 2629 . . . 4  |-  F/ x  w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }
41 nfcv 2613 . . . . 5  |-  F/_ y
w
42 nfopab2 4457 . . . . . 6  |-  F/_ y { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4342nfrn 5180 . . . . 5  |-  F/_ y ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4441, 43rexeqf 3010 . . . 4  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( E. y  e.  w  ph  <->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph ) )
4540, 44ralbid 2836 . . 3  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( A. x  e.  z  E. y  e.  w  ph  <->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
4645spcegv 3154 . 2  |-  ( ran 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( A. x  e.  z  E. y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  ->  E. w A. x  e.  z  E. y  e.  w  ph ) )
4722, 37, 46sylc 60 1  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758   E!weu 2260   E*wmo 2261   {cab 2436   A.wral 2795   E.wrex 2796   {crab 2799   _Vcvv 3068   <.cop 3981   {copab 4447   dom cdm 4938   ran crn 4939   Fun wfun 5510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524
This theorem is referenced by:  bnj865  32216
  Copyright terms: Public domain W3C validator