Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep3cl Structured version   Unicode version

Theorem zfrep3cl 4565
 Description: An inference rule based on the Axiom of Replacement. Typically, defines a function from to . (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
zfrep3cl.1
zfrep3cl.2
Assertion
Ref Expression
zfrep3cl
Distinct variable groups:   ,,,   ,
Allowed substitution hints:   (,)

Proof of Theorem zfrep3cl
StepHypRef Expression
1 nfcv 2629 . 2
2 zfrep3cl.1 . 2
3 zfrep3cl.2 . 2
41, 2, 3zfrepclf 4564 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369  wal 1377  wex 1596   wcel 1767  cvv 3113 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator