Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zfregs2VD Structured version   Unicode version

Theorem zfregs2VD 37210
Description: Virtual deduction proof of zfregs2 8225. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfregs2VD  |-  ( A  =/=  (/)  ->  -.  A. x  e.  A  E. y
( y  e.  A  /\  y  e.  x
) )
Distinct variable group:    x, y, A

Proof of Theorem zfregs2VD
StepHypRef Expression
1 idn1 36915 . . . . . . . 8  |-  (. A  =/=  (/)  ->.  A  =/=  (/) ).
2 zfregs 8224 . . . . . . . 8  |-  ( A  =/=  (/)  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
31, 2e1a 36977 . . . . . . 7  |-  (. A  =/=  (/)  ->.  E. x  e.  A  ( x  i^i  A )  =  (/) ).
4 incom 3655 . . . . . . . . 9  |-  ( x  i^i  A )  =  ( A  i^i  x
)
54eqeq1i 2429 . . . . . . . 8  |-  ( ( x  i^i  A )  =  (/)  <->  ( A  i^i  x )  =  (/) )
65rexbii 2924 . . . . . . 7  |-  ( E. x  e.  A  ( x  i^i  A )  =  (/)  <->  E. x  e.  A  ( A  i^i  x
)  =  (/) )
73, 6e1bi 36979 . . . . . 6  |-  (. A  =/=  (/)  ->.  E. x  e.  A  ( A  i^i  x
)  =  (/) ).
8 disj1 3837 . . . . . . 7  |-  ( ( A  i^i  x )  =  (/)  <->  A. y ( y  e.  A  ->  -.  y  e.  x )
)
98rexbii 2924 . . . . . 6  |-  ( E. x  e.  A  ( A  i^i  x )  =  (/)  <->  E. x  e.  A  A. y ( y  e.  A  ->  -.  y  e.  x ) )
107, 9e1bi 36979 . . . . 5  |-  (. A  =/=  (/)  ->.  E. x  e.  A  A. y ( y  e.  A  ->  -.  y  e.  x ) ).
11 alinexa 1707 . . . . . 6  |-  ( A. y ( y  e.  A  ->  -.  y  e.  x )  <->  -.  E. y
( y  e.  A  /\  y  e.  x
) )
1211rexbii 2924 . . . . 5  |-  ( E. x  e.  A  A. y ( y  e.  A  ->  -.  y  e.  x )  <->  E. x  e.  A  -.  E. y
( y  e.  A  /\  y  e.  x
) )
1310, 12e1bi 36979 . . . 4  |-  (. A  =/=  (/)  ->.  E. x  e.  A  -.  E. y ( y  e.  A  /\  y  e.  x ) ).
14 dfrex2 2873 . . . 4  |-  ( E. x  e.  A  -.  E. y ( y  e.  A  /\  y  e.  x )  <->  -.  A. x  e.  A  -.  -.  E. y ( y  e.  A  /\  y  e.  x ) )
1513, 14e1bi 36979 . . 3  |-  (. A  =/=  (/)  ->.  -.  A. x  e.  A  -.  -.  E. y ( y  e.  A  /\  y  e.  x ) ).
16 notnot2 115 . . . . . 6  |-  ( -. 
-.  E. y ( y  e.  A  /\  y  e.  x )  ->  E. y
( y  e.  A  /\  y  e.  x
) )
17 notnot1 125 . . . . . 6  |-  ( E. y ( y  e.  A  /\  y  e.  x )  ->  -.  -.  E. y ( y  e.  A  /\  y  e.  x ) )
1816, 17impbii 190 . . . . 5  |-  ( -. 
-.  E. y ( y  e.  A  /\  y  e.  x )  <->  E. y
( y  e.  A  /\  y  e.  x
) )
1918ralbii 2853 . . . 4  |-  ( A. x  e.  A  -.  -.  E. y ( y  e.  A  /\  y  e.  x )  <->  A. x  e.  A  E. y
( y  e.  A  /\  y  e.  x
) )
2019notbii 297 . . 3  |-  ( -. 
A. x  e.  A  -.  -.  E. y ( y  e.  A  /\  y  e.  x )  <->  -. 
A. x  e.  A  E. y ( y  e.  A  /\  y  e.  x ) )
2115, 20e1bi 36979 . 2  |-  (. A  =/=  (/)  ->.  -.  A. x  e.  A  E. y
( y  e.  A  /\  y  e.  x
) ).
2221in1 36912 1  |-  ( A  =/=  (/)  ->  -.  A. x  e.  A  E. y
( y  e.  A  /\  y  e.  x
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1657    e. wcel 1872    =/= wne 2614   A.wral 2771   E.wrex 2772    i^i cin 3435   (/)c0 3761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-reg 8116  ax-inf2 8155
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-vd1 36911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator