MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregs Structured version   Unicode version

Theorem zfregs 8168
Description: The strong form of the Axiom of Regularity, which does not require that  A be a set. Axiom 6' of [TakeutiZaring] p. 21. See also epfrs 8167. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
zfregs  |-  ( A  =/=  (/)  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
Distinct variable group:    x, A

Proof of Theorem zfregs
StepHypRef Expression
1 zfregfr 8070 . 2  |-  _E  Fr  A
2 epfrs 8167 . 2  |-  ( (  _E  Fr  A  /\  A  =/=  (/) )  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
31, 2mpan 674 1  |-  ( A  =/=  (/)  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    =/= wne 2599   E.wrex 2715    i^i cin 3378   (/)c0 3704    _E cep 4705    Fr wfr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-reg 8060  ax-inf2 8099
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-om 6651  df-wrecs 6983  df-recs 7045  df-rdg 7083
This theorem is referenced by:  zfregs2  8169  setind  8170  zfregs2VD  37153
  Copyright terms: Public domain W3C validator