MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregcl Structured version   Unicode version

Theorem zfregcl 7821
Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.)
Hypothesis
Ref Expression
zfregcl.1  |-  A  e. 
_V
Assertion
Ref Expression
zfregcl  |-  ( E. x  x  e.  A  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
)
Distinct variable group:    x, y, A

Proof of Theorem zfregcl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zfregcl.1 . 2  |-  A  e. 
_V
2 eleq2 2504 . . . 4  |-  ( z  =  A  ->  (
x  e.  z  <->  x  e.  A ) )
32exbidv 1680 . . 3  |-  ( z  =  A  ->  ( E. x  x  e.  z 
<->  E. x  x  e.  A ) )
4 eleq2 2504 . . . . . 6  |-  ( z  =  A  ->  (
y  e.  z  <->  y  e.  A ) )
54notbid 294 . . . . 5  |-  ( z  =  A  ->  ( -.  y  e.  z  <->  -.  y  e.  A ) )
65ralbidv 2747 . . . 4  |-  ( z  =  A  ->  ( A. y  e.  x  -.  y  e.  z  <->  A. y  e.  x  -.  y  e.  A )
)
76rexeqbi1dv 2938 . . 3  |-  ( z  =  A  ->  ( E. x  e.  z  A. y  e.  x  -.  y  e.  z  <->  E. x  e.  A  A. y  e.  x  -.  y  e.  A )
)
83, 7imbi12d 320 . 2  |-  ( z  =  A  ->  (
( E. x  x  e.  z  ->  E. x  e.  z  A. y  e.  x  -.  y  e.  z )  <->  ( E. x  x  e.  A  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
) ) )
9 nfre1 2784 . . 3  |-  F/ x E. x  e.  z  A. y  e.  x  -.  y  e.  z
10 axreg2 7820 . . . 4  |-  ( x  e.  z  ->  E. x
( x  e.  z  /\  A. y ( y  e.  x  ->  -.  y  e.  z
) ) )
11 df-ral 2732 . . . . . 6  |-  ( A. y  e.  x  -.  y  e.  z  <->  A. y
( y  e.  x  ->  -.  y  e.  z ) )
1211rexbii 2752 . . . . 5  |-  ( E. x  e.  z  A. y  e.  x  -.  y  e.  z  <->  E. x  e.  z  A. y
( y  e.  x  ->  -.  y  e.  z ) )
13 df-rex 2733 . . . . 5  |-  ( E. x  e.  z  A. y ( y  e.  x  ->  -.  y  e.  z )  <->  E. x
( x  e.  z  /\  A. y ( y  e.  x  ->  -.  y  e.  z
) ) )
1412, 13bitr2i 250 . . . 4  |-  ( E. x ( x  e.  z  /\  A. y
( y  e.  x  ->  -.  y  e.  z ) )  <->  E. x  e.  z  A. y  e.  x  -.  y  e.  z )
1510, 14sylib 196 . . 3  |-  ( x  e.  z  ->  E. x  e.  z  A. y  e.  x  -.  y  e.  z )
169, 15exlimi 1845 . 2  |-  ( E. x  x  e.  z  ->  E. x  e.  z 
A. y  e.  x  -.  y  e.  z
)
171, 8, 16vtocl 3036 1  |-  ( E. x  x  e.  A  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2727   E.wrex 2728   _Vcvv 2984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-ext 2423  ax-reg 7819
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ral 2732  df-rex 2733  df-v 2986
This theorem is referenced by:  zfreg  7822  zfreg2  7823  elirrv  7824
  Copyright terms: Public domain W3C validator