MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair Structured version   Unicode version

Theorem zfpair 4524
Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axpr 4525. Instead, use zfpair2 4527 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)

Assertion
Ref Expression
zfpair  |-  { x ,  y }  e.  _V

Proof of Theorem zfpair
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfpr2 3887 . 2  |-  { x ,  y }  =  { w  |  (
w  =  x  \/  w  =  y ) }
2 19.43 1660 . . . . 5  |-  ( E. z ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  <->  ( E. z ( z  =  (/)  /\  w  =  x )  \/  E. z
( z  =  { (/)
}  /\  w  =  y ) ) )
3 prlem2 954 . . . . . 6  |-  ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( ( z  =  (/)  \/  z  =  { (/)
} )  /\  (
( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) ) ) )
43exbii 1634 . . . . 5  |-  ( E. z ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  <->  E. z
( ( z  =  (/)  \/  z  =  { (/)
} )  /\  (
( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) ) ) )
5 0ex 4417 . . . . . . . 8  |-  (/)  e.  _V
65isseti 2973 . . . . . . 7  |-  E. z 
z  =  (/)
7 19.41v 1919 . . . . . . 7  |-  ( E. z ( z  =  (/)  /\  w  =  x )  <->  ( E. z 
z  =  (/)  /\  w  =  x ) )
86, 7mpbiran 909 . . . . . 6  |-  ( E. z ( z  =  (/)  /\  w  =  x )  <->  w  =  x
)
9 p0ex 4474 . . . . . . . 8  |-  { (/) }  e.  _V
109isseti 2973 . . . . . . 7  |-  E. z 
z  =  { (/) }
11 19.41v 1919 . . . . . . 7  |-  ( E. z ( z  =  { (/) }  /\  w  =  y )  <->  ( E. z  z  =  { (/)
}  /\  w  =  y ) )
1210, 11mpbiran 909 . . . . . 6  |-  ( E. z ( z  =  { (/) }  /\  w  =  y )  <->  w  =  y )
138, 12orbi12i 521 . . . . 5  |-  ( ( E. z ( z  =  (/)  /\  w  =  x )  \/  E. z ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( w  =  x  \/  w  =  y ) )
142, 4, 133bitr3ri 276 . . . 4  |-  ( ( w  =  x  \/  w  =  y )  <->  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) )
1514abbii 2550 . . 3  |-  { w  |  ( w  =  x  \/  w  =  y ) }  =  { w  |  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) }
16 dfpr2 3887 . . . . 5  |-  { (/) ,  { (/) } }  =  { z  |  ( z  =  (/)  \/  z  =  { (/) } ) }
17 pp0ex 4476 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
1816, 17eqeltrri 2509 . . . 4  |-  { z  |  ( z  =  (/)  \/  z  =  { (/)
} ) }  e.  _V
19 equequ2 1737 . . . . . . . 8  |-  ( v  =  x  ->  (
w  =  v  <->  w  =  x ) )
20 0inp0 4459 . . . . . . . 8  |-  ( z  =  (/)  ->  -.  z  =  { (/) } )
2119, 20prlem1 953 . . . . . . 7  |-  ( v  =  x  ->  (
z  =  (/)  ->  (
( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) ) )
2221alrimdv 1687 . . . . . 6  |-  ( v  =  x  ->  (
z  =  (/)  ->  A. w
( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
2322spimev 1954 . . . . 5  |-  ( z  =  (/)  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) )
24 orcom 387 . . . . . . . 8  |-  ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( ( z  =  { (/) }  /\  w  =  y )  \/  ( z  =  (/)  /\  w  =  x ) ) )
25 equequ2 1737 . . . . . . . . 9  |-  ( v  =  y  ->  (
w  =  v  <->  w  =  y ) )
2620con2i 120 . . . . . . . . 9  |-  ( z  =  { (/) }  ->  -.  z  =  (/) )
2725, 26prlem1 953 . . . . . . . 8  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  ( ( ( z  =  { (/) }  /\  w  =  y )  \/  ( z  =  (/)  /\  w  =  x ) )  ->  w  =  v )
) )
2824, 27syl7bi 230 . . . . . . 7  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  ( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
2928alrimdv 1687 . . . . . 6  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
3029spimev 1954 . . . . 5  |-  ( z  =  { (/) }  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) )
3123, 30jaoi 379 . . . 4  |-  ( ( z  =  (/)  \/  z  =  { (/) } )  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) )
3218, 31zfrep4 4406 . . 3  |-  { w  |  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) }  e.  _V
3315, 32eqeltri 2508 . 2  |-  { w  |  ( w  =  x  \/  w  =  y ) }  e.  _V
341, 33eqeltri 2508 1  |-  { x ,  y }  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2424   _Vcvv 2967   (/)c0 3632   {csn 3872   {cpr 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2969  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-pw 3857  df-sn 3873  df-pr 3875
This theorem is referenced by:  axpr  4525
  Copyright terms: Public domain W3C validator