MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndinf Structured version   Visualization version   Unicode version

Theorem zfcndinf 9069
Description: Axiom of Infinity ax-inf 8169, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing theorem el 4599 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.)
Assertion
Ref Expression
zfcndinf  |-  E. y
( x  e.  y  /\  A. z ( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) ) )
Distinct variable group:    x, y, z, w

Proof of Theorem zfcndinf
StepHypRef Expression
1 el 4599 . . 3  |-  E. w  x  e.  w
2 nfv 1772 . . . . . 6  |-  F/ w  x  e.  y
3 nfe1 1929 . . . . . . . 8  |-  F/ w E. w ( x  e.  w  /\  w  e.  y )
42, 3nfim 2014 . . . . . . 7  |-  F/ w
( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) )
54nfal 2041 . . . . . 6  |-  F/ w A. x ( x  e.  y  ->  E. w
( x  e.  w  /\  w  e.  y
) )
62, 5nfan 2022 . . . . 5  |-  F/ w
( x  e.  y  /\  A. x ( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) ) )
76nfex 2042 . . . 4  |-  F/ w E. y ( x  e.  y  /\  A. x
( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) ) )
8 axinfnd 9057 . . . . 5  |-  E. y
( x  e.  w  ->  ( x  e.  y  /\  A. x ( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) ) ) )
9819.37iv 1838 . . . 4  |-  ( x  e.  w  ->  E. y
( x  e.  y  /\  A. x ( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) ) ) )
107, 9exlimi 2006 . . 3  |-  ( E. w  x  e.  w  ->  E. y ( x  e.  y  /\  A. x ( x  e.  y  ->  E. w
( x  e.  w  /\  w  e.  y
) ) ) )
111, 10ax-mp 5 . 2  |-  E. y
( x  e.  y  /\  A. x ( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) ) )
12 elequ1 1905 . . . . . 6  |-  ( z  =  x  ->  (
z  e.  y  <->  x  e.  y ) )
13 elequ1 1905 . . . . . . . 8  |-  ( z  =  x  ->  (
z  e.  w  <->  x  e.  w ) )
1413anbi1d 716 . . . . . . 7  |-  ( z  =  x  ->  (
( z  e.  w  /\  w  e.  y
)  <->  ( x  e.  w  /\  w  e.  y ) ) )
1514exbidv 1779 . . . . . 6  |-  ( z  =  x  ->  ( E. w ( z  e.  w  /\  w  e.  y )  <->  E. w
( x  e.  w  /\  w  e.  y
) ) )
1612, 15imbi12d 326 . . . . 5  |-  ( z  =  x  ->  (
( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) )  <->  ( x  e.  y  ->  E. w
( x  e.  w  /\  w  e.  y
) ) ) )
1716cbvalv 2127 . . . 4  |-  ( A. z ( z  e.  y  ->  E. w
( z  e.  w  /\  w  e.  y
) )  <->  A. x
( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) ) )
1817anbi2i 705 . . 3  |-  ( ( x  e.  y  /\  A. z ( z  e.  y  ->  E. w
( z  e.  w  /\  w  e.  y
) ) )  <->  ( x  e.  y  /\  A. x
( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) ) ) )
1918exbii 1729 . 2  |-  ( E. y ( x  e.  y  /\  A. z
( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) ) )  <->  E. y ( x  e.  y  /\  A. x
( x  e.  y  ->  E. w ( x  e.  w  /\  w  e.  y ) ) ) )
2011, 19mpbir 214 1  |-  E. y
( x  e.  y  /\  A. z ( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375   A.wal 1453    = wceq 1455   E.wex 1674    e. wcel 1898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-reg 8133  ax-inf 8169
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-v 3059  df-dif 3419  df-un 3421  df-nul 3744  df-sn 3981  df-pr 3983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator