MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndac Structured version   Unicode version

Theorem zfcndac 9027
Description: Axiom of Choice ax-ac 8871, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
zfcndac  |-  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
Distinct variable group:    x, y, z, w, v, u, t

Proof of Theorem zfcndac
StepHypRef Expression
1 axacnd 9020 . . 3  |-  E. y A. z A. w ( A. y ( z  e.  w  /\  w  e.  x )  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) )
2 19.3v 1779 . . . . . 6  |-  ( A. y ( z  e.  w  /\  w  e.  x )  <->  ( z  e.  w  /\  w  e.  x ) )
32imbi1i 323 . . . . 5  |-  ( ( A. y ( z  e.  w  /\  w  e.  x )  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) )  <->  ( (
z  e.  w  /\  w  e.  x )  ->  E. x A. z
( E. x ( ( z  e.  w  /\  w  e.  x
)  /\  ( z  e.  x  /\  x  e.  y ) )  <->  z  =  x ) ) )
432albii 1662 . . . 4  |-  ( A. z A. w ( A. y ( z  e.  w  /\  w  e.  x )  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) )  <->  A. z A. w ( ( z  e.  w  /\  w  e.  x )  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) ) )
54exbii 1688 . . 3  |-  ( E. y A. z A. w ( A. y
( z  e.  w  /\  w  e.  x
)  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) )  <->  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) ) )
61, 5mpbi 208 . 2  |-  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) )
7 equequ2 1823 . . . . . . . . . 10  |-  ( v  =  x  ->  (
u  =  v  <->  u  =  x ) )
87bibi2d 316 . . . . . . . . 9  |-  ( v  =  x  ->  (
( E. t ( ( u  e.  w  /\  w  e.  t
)  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  v )  <->  ( E. t ( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  x
) ) )
9 elequ2 1847 . . . . . . . . . . . . 13  |-  ( t  =  x  ->  (
w  e.  t  <->  w  e.  x ) )
109anbi2d 702 . . . . . . . . . . . 12  |-  ( t  =  x  ->  (
( u  e.  w  /\  w  e.  t
)  <->  ( u  e.  w  /\  w  e.  x ) ) )
11 elequ2 1847 . . . . . . . . . . . . 13  |-  ( t  =  x  ->  (
u  e.  t  <->  u  e.  x ) )
12 elequ1 1845 . . . . . . . . . . . . 13  |-  ( t  =  x  ->  (
t  e.  y  <->  x  e.  y ) )
1311, 12anbi12d 709 . . . . . . . . . . . 12  |-  ( t  =  x  ->  (
( u  e.  t  /\  t  e.  y )  <->  ( u  e.  x  /\  x  e.  y ) ) )
1410, 13anbi12d 709 . . . . . . . . . . 11  |-  ( t  =  x  ->  (
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  ( ( u  e.  w  /\  w  e.  x )  /\  (
u  e.  x  /\  x  e.  y )
) ) )
1514cbvexv 2051 . . . . . . . . . 10  |-  ( E. t ( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  E. x ( ( u  e.  w  /\  w  e.  x )  /\  ( u  e.  x  /\  x  e.  y
) ) )
1615bibi1i 312 . . . . . . . . 9  |-  ( ( E. t ( ( u  e.  w  /\  w  e.  t )  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  x )  <->  ( E. x ( ( u  e.  w  /\  w  e.  x )  /\  (
u  e.  x  /\  x  e.  y )
)  <->  u  =  x
) )
178, 16syl6bb 261 . . . . . . . 8  |-  ( v  =  x  ->  (
( E. t ( ( u  e.  w  /\  w  e.  t
)  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  v )  <->  ( E. x ( ( u  e.  w  /\  w  e.  x )  /\  (
u  e.  x  /\  x  e.  y )
)  <->  u  =  x
) ) )
1817albidv 1734 . . . . . . 7  |-  ( v  =  x  ->  ( A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
)  <->  A. u ( E. x ( ( u  e.  w  /\  w  e.  x )  /\  (
u  e.  x  /\  x  e.  y )
)  <->  u  =  x
) ) )
19 elequ1 1845 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
u  e.  w  <->  z  e.  w ) )
2019anbi1d 703 . . . . . . . . . . 11  |-  ( u  =  z  ->  (
( u  e.  w  /\  w  e.  x
)  <->  ( z  e.  w  /\  w  e.  x ) ) )
21 elequ1 1845 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
u  e.  x  <->  z  e.  x ) )
2221anbi1d 703 . . . . . . . . . . 11  |-  ( u  =  z  ->  (
( u  e.  x  /\  x  e.  y
)  <->  ( z  e.  x  /\  x  e.  y ) ) )
2320, 22anbi12d 709 . . . . . . . . . 10  |-  ( u  =  z  ->  (
( ( u  e.  w  /\  w  e.  x )  /\  (
u  e.  x  /\  x  e.  y )
)  <->  ( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
) ) )
2423exbidv 1735 . . . . . . . . 9  |-  ( u  =  z  ->  ( E. x ( ( u  e.  w  /\  w  e.  x )  /\  (
u  e.  x  /\  x  e.  y )
)  <->  E. x ( ( z  e.  w  /\  w  e.  x )  /\  ( z  e.  x  /\  x  e.  y
) ) ) )
25 equequ1 1822 . . . . . . . . 9  |-  ( u  =  z  ->  (
u  =  x  <->  z  =  x ) )
2624, 25bibi12d 319 . . . . . . . 8  |-  ( u  =  z  ->  (
( E. x ( ( u  e.  w  /\  w  e.  x
)  /\  ( u  e.  x  /\  x  e.  y ) )  <->  u  =  x )  <->  ( E. x ( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) ) )
2726cbvalv 2050 . . . . . . 7  |-  ( A. u ( E. x
( ( u  e.  w  /\  w  e.  x )  /\  (
u  e.  x  /\  x  e.  y )
)  <->  u  =  x
)  <->  A. z ( E. x ( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) )
2818, 27syl6bb 261 . . . . . 6  |-  ( v  =  x  ->  ( A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
)  <->  A. z ( E. x ( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) ) )
2928cbvexv 2051 . . . . 5  |-  ( E. v A. u ( E. t ( ( u  e.  w  /\  w  e.  t )  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  v )  <->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) )
3029imbi2i 310 . . . 4  |-  ( ( ( z  e.  w  /\  w  e.  x
)  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )  <->  ( (
z  e.  w  /\  w  e.  x )  ->  E. x A. z
( E. x ( ( z  e.  w  /\  w  e.  x
)  /\  ( z  e.  x  /\  x  e.  y ) )  <->  z  =  x ) ) )
31302albii 1662 . . 3  |-  ( A. z A. w ( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u
( E. t ( ( u  e.  w  /\  w  e.  t
)  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  v ) )  <->  A. z A. w ( ( z  e.  w  /\  w  e.  x )  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) ) )
3231exbii 1688 . 2  |-  ( E. y A. z A. w ( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )  <->  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. x A. z ( E. x
( ( z  e.  w  /\  w  e.  x )  /\  (
z  e.  x  /\  x  e.  y )
)  <->  z  =  x ) ) )
336, 32mpbir 209 1  |-  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1403    = wceq 1405   E.wex 1633    e. wcel 1842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630  ax-reg 8052  ax-ac 8871
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-br 4396  df-opab 4454  df-eprel 4734  df-fr 4782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator