MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zextlt Structured version   Unicode version

Theorem zextlt 10958
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextlt  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <  M  <->  k  <  N ) )  ->  M  =  N )
Distinct variable groups:    k, M    k, N

Proof of Theorem zextlt
StepHypRef Expression
1 zltlem1 10937 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  <  M  <->  k  <_  ( M  - 
1 ) ) )
21adantrr 716 . . . . . 6  |-  ( ( k  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( k  <  M  <->  k  <_  ( M  -  1 ) ) )
3 zltlem1 10937 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <  N  <->  k  <_  ( N  - 
1 ) ) )
43adantrl 715 . . . . . 6  |-  ( ( k  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( k  <  N  <->  k  <_  ( N  -  1 ) ) )
52, 4bibi12d 321 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( (
k  <  M  <->  k  <  N )  <->  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) ) ) )
65ancoms 453 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( k  <  M  <->  k  <  N )  <->  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) ) ) )
76ralbidva 2893 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  < 
M  <->  k  <  N
)  <->  A. k  e.  ZZ  ( k  <_  ( M  -  1 )  <-> 
k  <_  ( N  -  1 ) ) ) )
8 peano2zm 10928 . . . . 5  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
9 peano2zm 10928 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
10 zextle 10957 . . . . . 6  |-  ( ( ( M  -  1 )  e.  ZZ  /\  ( N  -  1
)  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  ( M  -  1 )  <->  k  <_  ( N  -  1 ) ) )  ->  ( M  -  1 )  =  ( N  - 
1 ) )
11103expia 1198 . . . . 5  |-  ( ( ( M  -  1 )  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) )  ->  ( M  -  1 )  =  ( N  -  1 ) ) )
128, 9, 11syl2an 477 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) )  ->  ( M  -  1 )  =  ( N  -  1 ) ) )
13 zcn 10890 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 zcn 10890 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
15 ax-1cn 9567 . . . . . 6  |-  1  e.  CC
16 subcan2 9863 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
( M  -  1 )  =  ( N  -  1 )  <->  M  =  N ) )
1715, 16mp3an3 1313 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  - 
1 )  =  ( N  -  1 )  <-> 
M  =  N ) )
1813, 14, 17syl2an 477 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  - 
1 )  =  ( N  -  1 )  <-> 
M  =  N ) )
1912, 18sylibd 214 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) )  ->  M  =  N ) )
207, 19sylbid 215 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  < 
M  <->  k  <  N
)  ->  M  =  N ) )
21203impia 1193 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <  M  <->  k  <  N ) )  ->  M  =  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   class class class wbr 4456  (class class class)co 6296   CCcc 9507   1c1 9510    < clt 9645    <_ cle 9646    - cmin 9824   ZZcz 10885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator