Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zetacvg Structured version   Unicode version

Theorem zetacvg 28197
Description: The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
zetacvg.1  |-  ( ph  ->  S  e.  CC )
zetacvg.2  |-  ( ph  ->  1  <  ( Re
`  S ) )
zetacvg.3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( k  ^c  -u S ) )
Assertion
Ref Expression
zetacvg  |-  ( ph  ->  seq 1 (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    S, k    k, F    ph, k

Proof of Theorem zetacvg
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11113 . 2  |-  NN  =  ( ZZ>= `  1 )
2 1z 10890 . . 3  |-  1  e.  ZZ
32a1i 11 . 2  |-  ( ph  ->  1  e.  ZZ )
4 oveq1 6289 . . . . 5  |-  ( n  =  k  ->  (
n  ^c  -u ( Re `  S ) )  =  ( k  ^c  -u (
Re `  S )
) )
5 eqid 2467 . . . . 5  |-  ( n  e.  NN  |->  ( n  ^c  -u (
Re `  S )
) )  =  ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) )
6 ovex 6307 . . . . 5  |-  ( k  ^c  -u (
Re `  S )
)  e.  _V
74, 5, 6fvmpt 5948 . . . 4  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( n  ^c  -u ( Re `  S
) ) ) `  k )  =  ( k  ^c  -u ( Re `  S ) ) )
87adantl 466 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  k
)  =  ( k  ^c  -u (
Re `  S )
) )
9 zetacvg.3 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( k  ^c  -u S ) )
10 nncn 10540 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  CC )
1110adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
12 nnne0 10564 . . . . . . . 8  |-  ( k  e.  NN  ->  k  =/=  0 )
1312adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  =/=  0 )
14 zetacvg.1 . . . . . . . . 9  |-  ( ph  ->  S  e.  CC )
1514negcld 9913 . . . . . . . 8  |-  ( ph  -> 
-u S  e.  CC )
1615adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  -u S  e.  CC )
1711, 13, 16cxpefd 22821 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  ^c  -u S
)  =  ( exp `  ( -u S  x.  ( log `  k ) ) ) )
189, 17eqtrd 2508 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( exp `  ( -u S  x.  ( log `  k ) ) ) )
1918fveq2d 5868 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( exp `  ( -u S  x.  ( log `  k ) ) ) ) )
20 nnrp 11225 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  RR+ )
2120relogcld 22736 . . . . . . 7  |-  ( k  e.  NN  ->  ( log `  k )  e.  RR )
2221recnd 9618 . . . . . 6  |-  ( k  e.  NN  ->  ( log `  k )  e.  CC )
23 mulcl 9572 . . . . . 6  |-  ( (
-u S  e.  CC  /\  ( log `  k
)  e.  CC )  ->  ( -u S  x.  ( log `  k
) )  e.  CC )
2415, 22, 23syl2an 477 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( -u S  x.  ( log `  k ) )  e.  CC )
25 absef 13789 . . . . 5  |-  ( (
-u S  x.  ( log `  k ) )  e.  CC  ->  ( abs `  ( exp `  ( -u S  x.  ( log `  k ) ) ) )  =  ( exp `  ( Re `  ( -u S  x.  ( log `  k ) ) ) ) )
2624, 25syl 16 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( exp `  ( -u S  x.  ( log `  k ) ) ) )  =  ( exp `  ( Re `  ( -u S  x.  ( log `  k ) ) ) ) )
27 remul 12921 . . . . . . . 8  |-  ( (
-u S  e.  CC  /\  ( log `  k
)  e.  CC )  ->  ( Re `  ( -u S  x.  ( log `  k ) ) )  =  ( ( ( Re `  -u S
)  x.  ( Re
`  ( log `  k
) ) )  -  ( ( Im `  -u S )  x.  (
Im `  ( log `  k ) ) ) ) )
2815, 22, 27syl2an 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( Re
`  ( -u S  x.  ( log `  k
) ) )  =  ( ( ( Re
`  -u S )  x.  ( Re `  ( log `  k ) ) )  -  ( ( Im `  -u S
)  x.  ( Im
`  ( log `  k
) ) ) ) )
2914renegd 13001 . . . . . . . . 9  |-  ( ph  ->  ( Re `  -u S
)  =  -u (
Re `  S )
)
3021rered 13016 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
Re `  ( log `  k ) )  =  ( log `  k
) )
3129, 30oveqan12d 6301 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( Re `  -u S
)  x.  ( Re
`  ( log `  k
) ) )  =  ( -u ( Re
`  S )  x.  ( log `  k
) ) )
3221reim0d 13017 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
Im `  ( log `  k ) )  =  0 )
3332oveq2d 6298 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( Im `  -u S
)  x.  ( Im
`  ( log `  k
) ) )  =  ( ( Im `  -u S )  x.  0 ) )
34 imcl 12903 . . . . . . . . . . . 12  |-  ( -u S  e.  CC  ->  ( Im `  -u S
)  e.  RR )
3534recnd 9618 . . . . . . . . . . 11  |-  ( -u S  e.  CC  ->  ( Im `  -u S
)  e.  CC )
3615, 35syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( Im `  -u S
)  e.  CC )
3736mul01d 9774 . . . . . . . . 9  |-  ( ph  ->  ( ( Im `  -u S )  x.  0 )  =  0 )
3833, 37sylan9eqr 2530 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( Im `  -u S
)  x.  ( Im
`  ( log `  k
) ) )  =  0 )
3931, 38oveq12d 6300 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( Re `  -u S
)  x.  ( Re
`  ( log `  k
) ) )  -  ( ( Im `  -u S )  x.  (
Im `  ( log `  k ) ) ) )  =  ( (
-u ( Re `  S )  x.  ( log `  k ) )  -  0 ) )
4014recld 12986 . . . . . . . . . . 11  |-  ( ph  ->  ( Re `  S
)  e.  RR )
4140renegcld 9982 . . . . . . . . . 10  |-  ( ph  -> 
-u ( Re `  S )  e.  RR )
4241recnd 9618 . . . . . . . . 9  |-  ( ph  -> 
-u ( Re `  S )  e.  CC )
43 mulcl 9572 . . . . . . . . 9  |-  ( (
-u ( Re `  S )  e.  CC  /\  ( log `  k
)  e.  CC )  ->  ( -u (
Re `  S )  x.  ( log `  k
) )  e.  CC )
4442, 22, 43syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( -u ( Re `  S )  x.  ( log `  k
) )  e.  CC )
4544subid1d 9915 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( (
-u ( Re `  S )  x.  ( log `  k ) )  -  0 )  =  ( -u ( Re
`  S )  x.  ( log `  k
) ) )
4628, 39, 453eqtrd 2512 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( Re
`  ( -u S  x.  ( log `  k
) ) )  =  ( -u ( Re
`  S )  x.  ( log `  k
) ) )
4746fveq2d 5868 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( exp `  ( Re `  ( -u S  x.  ( log `  k ) ) ) )  =  ( exp `  ( -u ( Re
`  S )  x.  ( log `  k
) ) ) )
4842adantr 465 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  -u (
Re `  S )  e.  CC )
4911, 13, 48cxpefd 22821 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  ^c  -u (
Re `  S )
)  =  ( exp `  ( -u ( Re
`  S )  x.  ( log `  k
) ) ) )
5047, 49eqtr4d 2511 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( exp `  ( Re `  ( -u S  x.  ( log `  k ) ) ) )  =  ( k  ^c  -u (
Re `  S )
) )
5119, 26, 503eqtrd 2512 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  k
) )  =  ( k  ^c  -u ( Re `  S ) ) )
528, 51eqtr4d 2511 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  k
)  =  ( abs `  ( F `  k
) ) )
5311, 16cxpcld 22817 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  ^c  -u S
)  e.  CC )
549, 53eqeltrd 2555 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
55 2rp 11221 . . . . . . 7  |-  2  e.  RR+
56 1re 9591 . . . . . . . 8  |-  1  e.  RR
57 resubcl 9879 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( Re `  S )  e.  RR )  -> 
( 1  -  (
Re `  S )
)  e.  RR )
5856, 40, 57sylancr 663 . . . . . . 7  |-  ( ph  ->  ( 1  -  (
Re `  S )
)  e.  RR )
59 rpcxpcl 22785 . . . . . . 7  |-  ( ( 2  e.  RR+  /\  (
1  -  ( Re
`  S ) )  e.  RR )  -> 
( 2  ^c 
( 1  -  (
Re `  S )
) )  e.  RR+ )
6055, 58, 59sylancr 663 . . . . . 6  |-  ( ph  ->  ( 2  ^c 
( 1  -  (
Re `  S )
) )  e.  RR+ )
6160rpcnd 11254 . . . . 5  |-  ( ph  ->  ( 2  ^c 
( 1  -  (
Re `  S )
) )  e.  CC )
62 zetacvg.2 . . . . . . . . 9  |-  ( ph  ->  1  <  ( Re
`  S ) )
63 recl 12902 . . . . . . . . . . . 12  |-  ( S  e.  CC  ->  (
Re `  S )  e.  RR )
6463recnd 9618 . . . . . . . . . . 11  |-  ( S  e.  CC  ->  (
Re `  S )  e.  CC )
6514, 64syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( Re `  S
)  e.  CC )
6665addid2d 9776 . . . . . . . . 9  |-  ( ph  ->  ( 0  +  ( Re `  S ) )  =  ( Re
`  S ) )
6762, 66breqtrrd 4473 . . . . . . . 8  |-  ( ph  ->  1  <  ( 0  +  ( Re `  S ) ) )
68 0re 9592 . . . . . . . . . 10  |-  0  e.  RR
69 ltsubadd 10018 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( Re `  S )  e.  RR  /\  0  e.  RR )  ->  (
( 1  -  (
Re `  S )
)  <  0  <->  1  <  ( 0  +  ( Re
`  S ) ) ) )
7056, 68, 69mp3an13 1315 . . . . . . . . 9  |-  ( ( Re `  S )  e.  RR  ->  (
( 1  -  (
Re `  S )
)  <  0  <->  1  <  ( 0  +  ( Re
`  S ) ) ) )
7140, 70syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( 1  -  ( Re `  S
) )  <  0  <->  1  <  ( 0  +  ( Re `  S
) ) ) )
7267, 71mpbird 232 . . . . . . 7  |-  ( ph  ->  ( 1  -  (
Re `  S )
)  <  0 )
73 2re 10601 . . . . . . . . 9  |-  2  e.  RR
74 1lt2 10698 . . . . . . . . 9  |-  1  <  2
75 cxplt 22803 . . . . . . . . 9  |-  ( ( ( 2  e.  RR  /\  1  <  2 )  /\  ( ( 1  -  ( Re `  S ) )  e.  RR  /\  0  e.  RR ) )  -> 
( ( 1  -  ( Re `  S
) )  <  0  <->  ( 2  ^c  ( 1  -  ( Re
`  S ) ) )  <  ( 2  ^c  0 ) ) )
7673, 74, 75mpanl12 682 . . . . . . . 8  |-  ( ( ( 1  -  (
Re `  S )
)  e.  RR  /\  0  e.  RR )  ->  ( ( 1  -  ( Re `  S
) )  <  0  <->  ( 2  ^c  ( 1  -  ( Re
`  S ) ) )  <  ( 2  ^c  0 ) ) )
7758, 68, 76sylancl 662 . . . . . . 7  |-  ( ph  ->  ( ( 1  -  ( Re `  S
) )  <  0  <->  ( 2  ^c  ( 1  -  ( Re
`  S ) ) )  <  ( 2  ^c  0 ) ) )
7872, 77mpbid 210 . . . . . 6  |-  ( ph  ->  ( 2  ^c 
( 1  -  (
Re `  S )
) )  <  (
2  ^c  0 ) )
7960rprege0d 11259 . . . . . . 7  |-  ( ph  ->  ( ( 2  ^c  ( 1  -  ( Re `  S
) ) )  e.  RR  /\  0  <_ 
( 2  ^c 
( 1  -  (
Re `  S )
) ) ) )
80 absid 13088 . . . . . . 7  |-  ( ( ( 2  ^c 
( 1  -  (
Re `  S )
) )  e.  RR  /\  0  <_  ( 2  ^c  ( 1  -  ( Re `  S ) ) ) )  ->  ( abs `  ( 2  ^c 
( 1  -  (
Re `  S )
) ) )  =  ( 2  ^c 
( 1  -  (
Re `  S )
) ) )
8179, 80syl 16 . . . . . 6  |-  ( ph  ->  ( abs `  (
2  ^c  ( 1  -  ( Re
`  S ) ) ) )  =  ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) )
82 2cn 10602 . . . . . . . . 9  |-  2  e.  CC
83 cxp0 22779 . . . . . . . . 9  |-  ( 2  e.  CC  ->  (
2  ^c  0 )  =  1 )
8482, 83ax-mp 5 . . . . . . . 8  |-  ( 2  ^c  0 )  =  1
8584eqcomi 2480 . . . . . . 7  |-  1  =  ( 2  ^c  0 )
8685a1i 11 . . . . . 6  |-  ( ph  ->  1  =  ( 2  ^c  0 ) )
8778, 81, 863brtr4d 4477 . . . . 5  |-  ( ph  ->  ( abs `  (
2  ^c  ( 1  -  ( Re
`  S ) ) ) )  <  1
)
88 oveq2 6290 . . . . . . 7  |-  ( n  =  m  ->  (
( 2  ^c 
( 1  -  (
Re `  S )
) ) ^ n
)  =  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ m ) )
89 eqid 2467 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ n ) )  =  ( n  e.  NN0  |->  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ n ) )
90 ovex 6307 . . . . . . 7  |-  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ m )  e.  _V
9188, 89, 90fvmpt 5948 . . . . . 6  |-  ( m  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ n ) ) `  m )  =  ( ( 2  ^c  ( 1  -  ( Re `  S ) ) ) ^ m ) )
9291adantl 466 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ n ) ) `  m )  =  ( ( 2  ^c  ( 1  -  ( Re `  S ) ) ) ^ m ) )
9361, 87, 92geolim 13638 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 2  ^c  ( 1  -  ( Re `  S ) ) ) ^ n ) ) )  ~~>  ( 1  / 
( 1  -  (
2  ^c  ( 1  -  ( Re
`  S ) ) ) ) ) )
94 seqex 12073 . . . . 5  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ n ) ) )  e.  _V
95 ovex 6307 . . . . 5  |-  ( 1  /  ( 1  -  ( 2  ^c 
( 1  -  (
Re `  S )
) ) ) )  e.  _V
9694, 95breldm 5205 . . . 4  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 2  ^c  ( 1  -  ( Re `  S
) ) ) ^
n ) ) )  ~~>  ( 1  /  (
1  -  ( 2  ^c  ( 1  -  ( Re `  S ) ) ) ) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 2  ^c  ( 1  -  ( Re `  S
) ) ) ^
n ) ) )  e.  dom  ~~>  )
9793, 96syl 16 . . 3  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 2  ^c  ( 1  -  ( Re `  S ) ) ) ^ n ) ) )  e.  dom  ~~>  )
98 rpcxpcl 22785 . . . . . . 7  |-  ( ( k  e.  RR+  /\  -u (
Re `  S )  e.  RR )  ->  (
k  ^c  -u ( Re `  S ) )  e.  RR+ )
9920, 41, 98syl2anr 478 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  ^c  -u (
Re `  S )
)  e.  RR+ )
10099rpred 11252 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  ^c  -u (
Re `  S )
)  e.  RR )
1018, 100eqeltrd 2555 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  k
)  e.  RR )
10299rpge0d 11256 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( k  ^c  -u ( Re `  S
) ) )
103102, 8breqtrrd 4473 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `
 k ) )
104 nnre 10539 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  RR )
105104lep1d 10473 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  <_  ( k  +  1 ) )
10620reeflogd 22737 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( exp `  ( log `  k
) )  =  k )
107 peano2nn 10544 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
108107nnrpd 11251 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  RR+ )
109108reeflogd 22737 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( exp `  ( log `  (
k  +  1 ) ) )  =  ( k  +  1 ) )
110105, 106, 1093brtr4d 4477 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  ( exp `  ( log `  k
) )  <_  ( exp `  ( log `  (
k  +  1 ) ) ) )
111108relogcld 22736 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( log `  ( k  +  1 ) )  e.  RR )
112 efle 13710 . . . . . . . . . . . 12  |-  ( ( ( log `  k
)  e.  RR  /\  ( log `  ( k  +  1 ) )  e.  RR )  -> 
( ( log `  k
)  <_  ( log `  ( k  +  1 ) )  <->  ( exp `  ( log `  k
) )  <_  ( exp `  ( log `  (
k  +  1 ) ) ) ) )
11321, 111, 112syl2anc 661 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( log `  k
)  <_  ( log `  ( k  +  1 ) )  <->  ( exp `  ( log `  k
) )  <_  ( exp `  ( log `  (
k  +  1 ) ) ) ) )
114110, 113mpbird 232 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( log `  k )  <_ 
( log `  (
k  +  1 ) ) )
115114adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( log `  k )  <_  ( log `  ( k  +  1 ) ) )
11621adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( log `  k )  e.  RR )
117107adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
118117nnrpd 11251 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  RR+ )
119118relogcld 22736 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( log `  ( k  +  1 ) )  e.  RR )
12040adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( Re
`  S )  e.  RR )
12168a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  0  e.  RR )
12256a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  RR )
123 0lt1 10071 . . . . . . . . . . . . 13  |-  0  <  1
124123a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  1 )
125121, 122, 40, 124, 62lttrd 9738 . . . . . . . . . . 11  |-  ( ph  ->  0  <  ( Re
`  S ) )
126125adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
( Re `  S
) )
127 lemul2 10391 . . . . . . . . . 10  |-  ( ( ( log `  k
)  e.  RR  /\  ( log `  ( k  +  1 ) )  e.  RR  /\  (
( Re `  S
)  e.  RR  /\  0  <  ( Re `  S ) ) )  ->  ( ( log `  k )  <_  ( log `  ( k  +  1 ) )  <->  ( (
Re `  S )  x.  ( log `  k
) )  <_  (
( Re `  S
)  x.  ( log `  ( k  +  1 ) ) ) ) )
128116, 119, 120, 126, 127syl112anc 1232 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( log `  k )  <_  ( log `  (
k  +  1 ) )  <->  ( ( Re
`  S )  x.  ( log `  k
) )  <_  (
( Re `  S
)  x.  ( log `  ( k  +  1 ) ) ) ) )
129115, 128mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( Re `  S )  x.  ( log `  k
) )  <_  (
( Re `  S
)  x.  ( log `  ( k  +  1 ) ) ) )
130 remulcl 9573 . . . . . . . . . 10  |-  ( ( ( Re `  S
)  e.  RR  /\  ( log `  k )  e.  RR )  -> 
( ( Re `  S )  x.  ( log `  k ) )  e.  RR )
13140, 21, 130syl2an 477 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( Re `  S )  x.  ( log `  k
) )  e.  RR )
132 remulcl 9573 . . . . . . . . . 10  |-  ( ( ( Re `  S
)  e.  RR  /\  ( log `  ( k  +  1 ) )  e.  RR )  -> 
( ( Re `  S )  x.  ( log `  ( k  +  1 ) ) )  e.  RR )
13340, 111, 132syl2an 477 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( Re `  S )  x.  ( log `  (
k  +  1 ) ) )  e.  RR )
134131, 133lenegd 10127 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( Re `  S
)  x.  ( log `  k ) )  <_ 
( ( Re `  S )  x.  ( log `  ( k  +  1 ) ) )  <->  -u ( ( Re `  S )  x.  ( log `  ( k  +  1 ) ) )  <_  -u ( ( Re
`  S )  x.  ( log `  k
) ) ) )
135129, 134mpbid 210 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  -u (
( Re `  S
)  x.  ( log `  ( k  +  1 ) ) )  <_  -u ( ( Re `  S )  x.  ( log `  k ) ) )
136111recnd 9618 . . . . . . . 8  |-  ( k  e.  NN  ->  ( log `  ( k  +  1 ) )  e.  CC )
137 mulneg1 9989 . . . . . . . 8  |-  ( ( ( Re `  S
)  e.  CC  /\  ( log `  ( k  +  1 ) )  e.  CC )  -> 
( -u ( Re `  S )  x.  ( log `  ( k  +  1 ) ) )  =  -u ( ( Re
`  S )  x.  ( log `  (
k  +  1 ) ) ) )
13865, 136, 137syl2an 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( -u ( Re `  S )  x.  ( log `  (
k  +  1 ) ) )  =  -u ( ( Re `  S )  x.  ( log `  ( k  +  1 ) ) ) )
139 mulneg1 9989 . . . . . . . 8  |-  ( ( ( Re `  S
)  e.  CC  /\  ( log `  k )  e.  CC )  -> 
( -u ( Re `  S )  x.  ( log `  k ) )  =  -u ( ( Re
`  S )  x.  ( log `  k
) ) )
14065, 22, 139syl2an 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( -u ( Re `  S )  x.  ( log `  k
) )  =  -u ( ( Re `  S )  x.  ( log `  k ) ) )
141135, 138, 1403brtr4d 4477 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( -u ( Re `  S )  x.  ( log `  (
k  +  1 ) ) )  <_  ( -u ( Re `  S
)  x.  ( log `  k ) ) )
142 remulcl 9573 . . . . . . . 8  |-  ( (
-u ( Re `  S )  e.  RR  /\  ( log `  (
k  +  1 ) )  e.  RR )  ->  ( -u (
Re `  S )  x.  ( log `  (
k  +  1 ) ) )  e.  RR )
14341, 111, 142syl2an 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( -u ( Re `  S )  x.  ( log `  (
k  +  1 ) ) )  e.  RR )
144 remulcl 9573 . . . . . . . 8  |-  ( (
-u ( Re `  S )  e.  RR  /\  ( log `  k
)  e.  RR )  ->  ( -u (
Re `  S )  x.  ( log `  k
) )  e.  RR )
14541, 21, 144syl2an 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( -u ( Re `  S )  x.  ( log `  k
) )  e.  RR )
146 efle 13710 . . . . . . 7  |-  ( ( ( -u ( Re
`  S )  x.  ( log `  (
k  +  1 ) ) )  e.  RR  /\  ( -u ( Re
`  S )  x.  ( log `  k
) )  e.  RR )  ->  ( ( -u ( Re `  S )  x.  ( log `  (
k  +  1 ) ) )  <_  ( -u ( Re `  S
)  x.  ( log `  k ) )  <->  ( exp `  ( -u ( Re
`  S )  x.  ( log `  (
k  +  1 ) ) ) )  <_ 
( exp `  ( -u ( Re `  S
)  x.  ( log `  k ) ) ) ) )
147143, 145, 146syl2anc 661 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( (
-u ( Re `  S )  x.  ( log `  ( k  +  1 ) ) )  <_  ( -u (
Re `  S )  x.  ( log `  k
) )  <->  ( exp `  ( -u ( Re
`  S )  x.  ( log `  (
k  +  1 ) ) ) )  <_ 
( exp `  ( -u ( Re `  S
)  x.  ( log `  k ) ) ) ) )
148141, 147mpbid 210 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( exp `  ( -u ( Re
`  S )  x.  ( log `  (
k  +  1 ) ) ) )  <_ 
( exp `  ( -u ( Re `  S
)  x.  ( log `  k ) ) ) )
149 oveq1 6289 . . . . . . . 8  |-  ( n  =  ( k  +  1 )  ->  (
n  ^c  -u ( Re `  S ) )  =  ( ( k  +  1 )  ^c  -u (
Re `  S )
) )
150 ovex 6307 . . . . . . . 8  |-  ( ( k  +  1 )  ^c  -u (
Re `  S )
)  e.  _V
151149, 5, 150fvmpt 5948 . . . . . . 7  |-  ( ( k  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( n  ^c  -u ( Re `  S
) ) ) `  ( k  +  1 ) )  =  ( ( k  +  1 )  ^c  -u ( Re `  S ) ) )
152117, 151syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  (
k  +  1 ) )  =  ( ( k  +  1 )  ^c  -u (
Re `  S )
) )
153117nncnd 10548 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  CC )
154117nnne0d 10576 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  =/=  0 )
155153, 154, 48cxpefd 22821 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  ^c  -u (
Re `  S )
)  =  ( exp `  ( -u ( Re
`  S )  x.  ( log `  (
k  +  1 ) ) ) ) )
156152, 155eqtrd 2508 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  (
k  +  1 ) )  =  ( exp `  ( -u ( Re
`  S )  x.  ( log `  (
k  +  1 ) ) ) ) )
1578, 49eqtrd 2508 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  k
)  =  ( exp `  ( -u ( Re
`  S )  x.  ( log `  k
) ) ) )
158148, 156, 1573brtr4d 4477 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  (
k  +  1 ) )  <_  ( (
n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  k
) )
15958recnd 9618 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  -  (
Re `  S )
)  e.  CC )
160159adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 1  -  ( Re `  S ) )  e.  CC )
161 nn0re 10800 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  m  e.  RR )
162161adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  RR )
163162recnd 9618 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  CC )
164160, 163mulcomd 9613 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
1  -  ( Re
`  S ) )  x.  m )  =  ( m  x.  (
1  -  ( Re
`  S ) ) ) )
165164oveq2d 6298 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2  ^c  ( ( 1  -  ( Re
`  S ) )  x.  m ) )  =  ( 2  ^c  ( m  x.  ( 1  -  (
Re `  S )
) ) ) )
16655a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  2  e.  RR+ )
167166, 162, 160cxpmuld 22843 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2  ^c  ( m  x.  ( 1  -  ( Re `  S
) ) ) )  =  ( ( 2  ^c  m )  ^c  ( 1  -  ( Re `  S ) ) ) )
168 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  NN0 )
169 cxpexp 22777 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  m  e.  NN0 )  -> 
( 2  ^c 
m )  =  ( 2 ^ m ) )
17082, 168, 169sylancr 663 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2  ^c  m )  =  ( 2 ^ m ) )
171 ax-1cn 9546 . . . . . . . . . . 11  |-  1  e.  CC
17265adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( Re `  S )  e.  CC )
173 negsub 9863 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( Re `  S )  e.  CC )  -> 
( 1  +  -u ( Re `  S ) )  =  ( 1  -  ( Re `  S ) ) )
174171, 172, 173sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 1  +  -u ( Re `  S ) )  =  ( 1  -  (
Re `  S )
) )
175174eqcomd 2475 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 1  -  ( Re `  S ) )  =  ( 1  +  -u ( Re `  S ) ) )
176170, 175oveq12d 6300 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2  ^c  m )  ^c  ( 1  -  ( Re
`  S ) ) )  =  ( ( 2 ^ m )  ^c  ( 1  +  -u ( Re `  S ) ) ) )
177165, 167, 1763eqtrd 2512 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2  ^c  ( ( 1  -  ( Re
`  S ) )  x.  m ) )  =  ( ( 2 ^ m )  ^c  ( 1  + 
-u ( Re `  S ) ) ) )
17858adantr 465 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 1  -  ( Re `  S ) )  e.  RR )
179166, 178, 163cxpmuld 22843 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2  ^c  ( ( 1  -  ( Re
`  S ) )  x.  m ) )  =  ( ( 2  ^c  ( 1  -  ( Re `  S ) ) )  ^c  m ) )
180 2nn 10689 . . . . . . . . . . 11  |-  2  e.  NN
181 nnexpcl 12143 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  NN )
182180, 181mpan 670 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( 2 ^ m )  e.  NN )
183182adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2 ^ m )  e.  NN )
184183nncnd 10548 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2 ^ m )  e.  CC )
185183nnne0d 10576 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2 ^ m )  =/=  0 )
186171a1i 11 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  1  e.  CC )
18742adantr 465 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  -u ( Re
`  S )  e.  CC )
188184, 185, 186, 187cxpaddd 22826 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2 ^ m )  ^c  ( 1  +  -u ( Re `  S ) ) )  =  ( ( ( 2 ^ m )  ^c  1 )  x.  ( ( 2 ^ m )  ^c  -u ( Re `  S ) ) ) )
189177, 179, 1883eqtr3d 2516 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2  ^c  ( 1  -  ( Re
`  S ) ) )  ^c  m )  =  ( ( ( 2 ^ m
)  ^c  1 )  x.  ( ( 2 ^ m )  ^c  -u (
Re `  S )
) ) )
190 cxpexp 22777 . . . . . . 7  |-  ( ( ( 2  ^c 
( 1  -  (
Re `  S )
) )  e.  CC  /\  m  e.  NN0 )  ->  ( ( 2  ^c  ( 1  -  ( Re `  S
) ) )  ^c  m )  =  ( ( 2  ^c  ( 1  -  ( Re `  S
) ) ) ^
m ) )
19161, 190sylan 471 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2  ^c  ( 1  -  ( Re
`  S ) ) )  ^c  m )  =  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ m ) )
192184cxp1d 22815 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2 ^ m )  ^c  1 )  =  ( 2 ^ m ) )
193192oveq1d 6297 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
( 2 ^ m
)  ^c  1 )  x.  ( ( 2 ^ m )  ^c  -u (
Re `  S )
) )  =  ( ( 2 ^ m
)  x.  ( ( 2 ^ m )  ^c  -u (
Re `  S )
) ) )
194189, 191, 1933eqtr3d 2516 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ m )  =  ( ( 2 ^ m )  x.  ( ( 2 ^ m )  ^c  -u ( Re `  S
) ) ) )
195180, 168, 181sylancr 663 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2 ^ m )  e.  NN )
196 oveq1 6289 . . . . . . . 8  |-  ( n  =  ( 2 ^ m )  ->  (
n  ^c  -u ( Re `  S ) )  =  ( ( 2 ^ m )  ^c  -u (
Re `  S )
) )
197 ovex 6307 . . . . . . . 8  |-  ( ( 2 ^ m )  ^c  -u (
Re `  S )
)  e.  _V
198196, 5, 197fvmpt 5948 . . . . . . 7  |-  ( ( 2 ^ m )  e.  NN  ->  (
( n  e.  NN  |->  ( n  ^c  -u ( Re `  S
) ) ) `  ( 2 ^ m
) )  =  ( ( 2 ^ m
)  ^c  -u ( Re `  S ) ) )
199195, 198syl 16 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `  (
2 ^ m ) )  =  ( ( 2 ^ m )  ^c  -u (
Re `  S )
) )
200199oveq2d 6298 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2 ^ m )  x.  ( ( n  e.  NN  |->  ( n  ^c  -u (
Re `  S )
) ) `  (
2 ^ m ) ) )  =  ( ( 2 ^ m
)  x.  ( ( 2 ^ m )  ^c  -u (
Re `  S )
) ) )
201194, 92, 2003eqtr4d 2518 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( 2  ^c  ( 1  -  ( Re
`  S ) ) ) ^ n ) ) `  m )  =  ( ( 2 ^ m )  x.  ( ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) `
 ( 2 ^ m ) ) ) )
202101, 103, 158, 201climcnds 13622 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( n  ^c  -u (
Re `  S )
) ) )  e. 
dom 
~~> 
<->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 2  ^c  ( 1  -  ( Re `  S ) ) ) ^ n ) ) )  e.  dom  ~~>  ) )
20397, 202mpbird 232 . 2  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( n  ^c  -u ( Re `  S ) ) ) )  e.  dom  ~~>  )
2041, 3, 52, 54, 203abscvgcvg 13592 1  |-  ( ph  ->  seq 1 (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801   -ucneg 9802    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   RR+crp 11216    seqcseq 12071   ^cexp 12130   Recre 12889   Imcim 12890   abscabs 13026    ~~> cli 13266   expce 13655   logclog 22670    ^c ccxp 22671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006  df-log 22672  df-cxp 22673
This theorem is referenced by:  lgamgulmlem4  28214
  Copyright terms: Public domain W3C validator