Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zerdivemp1x Structured version   Unicode version

Theorem zerdivemp1x 29948
Description: In a unitary ring a left invertible element is not a zero divisor. Generalization of zerdivemp1 25098 by Frederic Line. (Contributed by Jeff Madsen, 18-Apr-2010.)
Hypotheses
Ref Expression
zerdivempx.1  |-  G  =  ( 1st `  R
)
zerdivempx.2  |-  H  =  ( 2nd `  R
)
zerdivempx.3  |-  Z  =  (GId `  G )
zerdivempx.4  |-  X  =  ran  G
zerdivempx.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
zerdivemp1x  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  E. a  e.  X  ( a H A )  =  U )  ->  ( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z ) ) )
Distinct variable groups:    A, a    B, a    H, a    R, a    X, a    Z, a
Allowed substitution hints:    U( a)    G( a)

Proof of Theorem zerdivemp1x
StepHypRef Expression
1 oveq2 6283 . . . . . . 7  |-  ( ( A H B )  =  Z  ->  (
a H ( A H B ) )  =  ( a H Z ) )
2 simpl1 994 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  R  e.  RingOps )
3 simpr1 997 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  a  e.  X )
4 simpr3 999 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  A  e.  X )
5 simpl3 996 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  B  e.  X )
6 zerdivempx.1 . . . . . . . . . . 11  |-  G  =  ( 1st `  R
)
7 zerdivempx.2 . . . . . . . . . . 11  |-  H  =  ( 2nd `  R
)
8 zerdivempx.4 . . . . . . . . . . 11  |-  X  =  ran  G
96, 7, 8rngoass 25051 . . . . . . . . . 10  |-  ( ( R  e.  RingOps  /\  (
a  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( (
a H A ) H B )  =  ( a H ( A H B ) ) )
102, 3, 4, 5, 9syl13anc 1225 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  ( (
a H A ) H B )  =  ( a H ( A H B ) ) )
11 eqtr 2486 . . . . . . . . . . . . 13  |-  ( ( ( ( a H A ) H B )  =  ( a H ( A H B ) )  /\  ( a H ( A H B ) )  =  ( a H Z ) )  ->  ( ( a H A ) H B )  =  ( a H Z ) )
1211ex 434 . . . . . . . . . . . 12  |-  ( ( ( a H A ) H B )  =  ( a H ( A H B ) )  ->  (
( a H ( A H B ) )  =  ( a H Z )  -> 
( ( a H A ) H B )  =  ( a H Z ) ) )
13 oveq1 6282 . . . . . . . . . . . . . . . 16  |-  ( ( a H A )  =  U  ->  (
( a H A ) H B )  =  ( U H B ) )
14 eqtr 2486 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( U H B )  =  ( ( a H A ) H B )  /\  ( ( a H A ) H B )  =  ( a H Z ) )  ->  ( U H B )  =  ( a H Z ) )
15 zerdivempx.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  Z  =  (GId `  G )
1615, 8, 6, 7rngorz 25066 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  RingOps  /\  a  e.  X )  ->  (
a H Z )  =  Z )
17163adant3 1011 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  RingOps  /\  a  e.  X  /\  B  e.  X )  ->  (
a H Z )  =  Z )
186rneqi 5220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ran  G  =  ran  ( 1st `  R
)
198, 18eqtri 2489 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  X  =  ran  ( 1st `  R
)
20 zerdivempx.5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  U  =  (GId `  H )
217, 19, 20rngolidm 25088 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  RingOps  /\  B  e.  X )  ->  ( U H B )  =  B )
22213adant2 1010 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  RingOps  /\  a  e.  X  /\  B  e.  X )  ->  ( U H B )  =  B )
23 simp1 991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  -> 
( U H B )  =  ( a H Z ) )
24 simp2 992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  -> 
( U H B )  =  B )
25 simp3 993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  -> 
( a H Z )  =  Z )
2623, 24, 253eqtr3d 2509 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  ->  B  =  Z )
2726a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( U H B )  =  ( a H Z )  /\  ( U H B )  =  B  /\  (
a H Z )  =  Z )  -> 
( A  e.  X  ->  B  =  Z ) )
28273exp 1190 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( U H B )  =  ( a H Z )  ->  (
( U H B )  =  B  -> 
( ( a H Z )  =  Z  ->  ( A  e.  X  ->  B  =  Z ) ) ) )
2928com14 88 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  e.  X  ->  (
( U H B )  =  B  -> 
( ( a H Z )  =  Z  ->  ( ( U H B )  =  ( a H Z )  ->  B  =  Z ) ) ) )
3029com13 80 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a H Z )  =  Z  ->  (
( U H B )  =  B  -> 
( A  e.  X  ->  ( ( U H B )  =  ( a H Z )  ->  B  =  Z ) ) ) )
3117, 22, 30sylc 60 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RingOps  /\  a  e.  X  /\  B  e.  X )  ->  ( A  e.  X  ->  ( ( U H B )  =  ( a H Z )  ->  B  =  Z )
) )
32313exp 1190 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RingOps  ->  ( a  e.  X  ->  ( B  e.  X  ->  ( A  e.  X  ->  (
( U H B )  =  ( a H Z )  ->  B  =  Z )
) ) ) )
3332com15 93 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U H B )  =  ( a H Z )  ->  (
a  e.  X  -> 
( B  e.  X  ->  ( A  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) ) )
3433com24 87 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U H B )  =  ( a H Z )  ->  ( A  e.  X  ->  ( B  e.  X  -> 
( a  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) ) )
3514, 34syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( U H B )  =  ( ( a H A ) H B )  /\  ( ( a H A ) H B )  =  ( a H Z ) )  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( a  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z ) ) ) ) )
3635ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( ( U H B )  =  ( ( a H A ) H B )  ->  (
( ( a H A ) H B )  =  ( a H Z )  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( a  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) ) ) )
3736eqcoms 2472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a H A ) H B )  =  ( U H B )  ->  (
( ( a H A ) H B )  =  ( a H Z )  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( a  e.  X  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) ) ) )
3837com25 91 . . . . . . . . . . . . . . . 16  |-  ( ( ( a H A ) H B )  =  ( U H B )  ->  (
a  e.  X  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( R  e.  RingOps 
->  B  =  Z
) ) ) ) ) )
3913, 38syl 16 . . . . . . . . . . . . . . 15  |-  ( ( a H A )  =  U  ->  (
a  e.  X  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( R  e.  RingOps 
->  B  =  Z
) ) ) ) ) )
4039com12 31 . . . . . . . . . . . . . 14  |-  ( a  e.  X  ->  (
( a H A )  =  U  -> 
( A  e.  X  ->  ( B  e.  X  ->  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( R  e.  RingOps 
->  B  =  Z
) ) ) ) ) )
41403imp 1185 . . . . . . . . . . . . 13  |-  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( B  e.  X  ->  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( R  e.  RingOps 
->  B  =  Z
) ) ) )
4241com13 80 . . . . . . . . . . . 12  |-  ( ( ( a H A ) H B )  =  ( a H Z )  ->  ( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( R  e.  RingOps  ->  B  =  Z )
) ) )
4312, 42syl6 33 . . . . . . . . . . 11  |-  ( ( ( a H A ) H B )  =  ( a H ( A H B ) )  ->  (
( a H ( A H B ) )  =  ( a H Z )  -> 
( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( R  e.  RingOps  ->  B  =  Z ) ) ) ) )
4443com15 93 . . . . . . . . . 10  |-  ( R  e.  RingOps  ->  ( ( a H ( A H B ) )  =  ( a H Z )  ->  ( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( ( ( a H A ) H B )  =  ( a H ( A H B ) )  ->  B  =  Z ) ) ) ) )
45443imp1 1204 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  ( (
( a H A ) H B )  =  ( a H ( A H B ) )  ->  B  =  Z ) )
4610, 45mpd 15 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  ( a H ( A H B ) )  =  ( a H Z )  /\  B  e.  X )  /\  ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )
)  ->  B  =  Z )
47463exp1 1207 . . . . . . 7  |-  ( R  e.  RingOps  ->  ( ( a H ( A H B ) )  =  ( a H Z )  ->  ( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  B  =  Z ) ) ) )
481, 47syl5com 30 . . . . . 6  |-  ( ( A H B )  =  Z  ->  ( R  e.  RingOps  ->  ( B  e.  X  ->  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  B  =  Z ) ) ) )
4948com14 88 . . . . 5  |-  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( R  e.  RingOps  -> 
( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z ) ) ) )
50493exp 1190 . . . 4  |-  ( a  e.  X  ->  (
( a H A )  =  U  -> 
( A  e.  X  ->  ( R  e.  RingOps  -> 
( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z ) ) ) ) ) )
5150rexlimiv 2942 . . 3  |-  ( E. a  e.  X  ( a H A )  =  U  ->  ( A  e.  X  ->  ( R  e.  RingOps  ->  ( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z )
) ) ) )
5251com13 80 . 2  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( E. a  e.  X  (
a H A )  =  U  ->  ( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z )
) ) ) )
53523imp 1185 1  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  E. a  e.  X  ( a H A )  =  U )  ->  ( B  e.  X  ->  ( ( A H B )  =  Z  ->  B  =  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   E.wrex 2808   ran crn 4993   ` cfv 5579  (class class class)co 6275   1stc1st 6772   2ndc2nd 6773  GIdcgi 24851   RingOpscrngo 25039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-fo 5585  df-fv 5587  df-riota 6236  df-ov 6278  df-1st 6774  df-2nd 6775  df-grpo 24855  df-gid 24856  df-ablo 24946  df-ass 24977  df-exid 24979  df-mgm 24983  df-sgr 24995  df-mndo 25002  df-rngo 25040
This theorem is referenced by:  isdrngo2  29951
  Copyright terms: Public domain W3C validator