MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo Structured version   Unicode version

Theorem zeo 10723
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )

Proof of Theorem zeo
StepHypRef Expression
1 elz 10644 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 oveq1 6097 . . . . . . 7  |-  ( N  =  0  ->  ( N  /  2 )  =  ( 0  /  2
) )
3 2cn 10388 . . . . . . . . 9  |-  2  e.  CC
4 2ne0 10410 . . . . . . . . 9  |-  2  =/=  0
53, 4div0i 10061 . . . . . . . 8  |-  ( 0  /  2 )  =  0
6 0z 10653 . . . . . . . 8  |-  0  e.  ZZ
75, 6eqeltri 2511 . . . . . . 7  |-  ( 0  /  2 )  e.  ZZ
82, 7syl6eqel 2529 . . . . . 6  |-  ( N  =  0  ->  ( N  /  2 )  e.  ZZ )
98pm2.24d 143 . . . . 5  |-  ( N  =  0  ->  ( -.  ( N  /  2
)  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
109adantl 463 . . . 4  |-  ( ( N  e.  RR  /\  N  =  0 )  ->  ( -.  ( N  /  2 )  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
11 nnz 10664 . . . . . . 7  |-  ( ( N  /  2 )  e.  NN  ->  ( N  /  2 )  e.  ZZ )
1211con3i 135 . . . . . 6  |-  ( -.  ( N  /  2
)  e.  ZZ  ->  -.  ( N  /  2
)  e.  NN )
13 nneo 10721 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  <->  -.  (
( N  +  1 )  /  2 )  e.  NN ) )
1413biimprd 223 . . . . . . 7  |-  ( N  e.  NN  ->  ( -.  ( ( N  + 
1 )  /  2
)  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1514con1d 124 . . . . . 6  |-  ( N  e.  NN  ->  ( -.  ( N  /  2
)  e.  NN  ->  ( ( N  +  1 )  /  2 )  e.  NN ) )
16 nnz 10664 . . . . . 6  |-  ( ( ( N  +  1 )  /  2 )  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  ZZ )
1712, 15, 16syl56 34 . . . . 5  |-  ( N  e.  NN  ->  ( -.  ( N  /  2
)  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
1817adantl 463 . . . 4  |-  ( ( N  e.  RR  /\  N  e.  NN )  ->  ( -.  ( N  /  2 )  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
19 recn 9368 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  N  e.  CC )
20 divneg 10022 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
213, 4, 20mp3an23 1301 . . . . . . . . . . 11  |-  ( N  e.  CC  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
2219, 21syl 16 . . . . . . . . . 10  |-  ( N  e.  RR  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
2322eleq1d 2507 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( -u ( N  /  2
)  e.  NN  <->  ( -u N  /  2 )  e.  NN ) )
24 nnnegz 10645 . . . . . . . . 9  |-  ( -u ( N  /  2
)  e.  NN  ->  -u -u ( N  /  2
)  e.  ZZ )
2523, 24syl6bir 229 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( -u N  /  2
)  e.  NN  ->  -u -u ( N  /  2
)  e.  ZZ ) )
2619halfcld 10565 . . . . . . . . . 10  |-  ( N  e.  RR  ->  ( N  /  2 )  e.  CC )
2726negnegd 9706 . . . . . . . . 9  |-  ( N  e.  RR  ->  -u -u ( N  /  2 )  =  ( N  /  2
) )
2827eleq1d 2507 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u -u ( N  /  2
)  e.  ZZ  <->  ( N  /  2 )  e.  ZZ ) )
2925, 28sylibd 214 . . . . . . 7  |-  ( N  e.  RR  ->  (
( -u N  /  2
)  e.  NN  ->  ( N  /  2 )  e.  ZZ ) )
3029adantr 462 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( ( -u N  /  2 )  e.  NN  ->  ( N  /  2 )  e.  ZZ ) )
3130con3d 133 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( -.  ( N  /  2 )  e.  ZZ  ->  -.  ( -u N  /  2 )  e.  NN ) )
32 nneo 10721 . . . . . . . 8  |-  ( -u N  e.  NN  ->  ( ( -u N  / 
2 )  e.  NN  <->  -.  ( ( -u N  +  1 )  / 
2 )  e.  NN ) )
3332biimprd 223 . . . . . . 7  |-  ( -u N  e.  NN  ->  ( -.  ( ( -u N  +  1 )  /  2 )  e.  NN  ->  ( -u N  /  2 )  e.  NN ) )
3433con1d 124 . . . . . 6  |-  ( -u N  e.  NN  ->  ( -.  ( -u N  /  2 )  e.  NN  ->  ( ( -u N  +  1 )  /  2 )  e.  NN ) )
35 nnz 10664 . . . . . . 7  |-  ( ( ( -u N  + 
1 )  /  2
)  e.  NN  ->  ( ( -u N  + 
1 )  /  2
)  e.  ZZ )
36 peano2zm 10684 . . . . . . . . . 10  |-  ( ( ( -u N  + 
1 )  /  2
)  e.  ZZ  ->  ( ( ( -u N  +  1 )  / 
2 )  -  1 )  e.  ZZ )
37 ax-1cn 9336 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
3837, 3negsubdi2i 9690 . . . . . . . . . . . . . . . . . 18  |-  -u (
1  -  2 )  =  ( 2  -  1 )
39 2m1e1 10432 . . . . . . . . . . . . . . . . . 18  |-  ( 2  -  1 )  =  1
4038, 39eqtr2i 2462 . . . . . . . . . . . . . . . . 17  |-  1  =  -u ( 1  -  2 )
4137, 3subcli 9680 . . . . . . . . . . . . . . . . . 18  |-  ( 1  -  2 )  e.  CC
4237, 41negcon2i 9687 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  -u ( 1  -  2 )  <->  ( 1  -  2 )  = 
-u 1 )
4340, 42mpbi 208 . . . . . . . . . . . . . . . 16  |-  ( 1  -  2 )  = 
-u 1
4443oveq2i 6101 . . . . . . . . . . . . . . 15  |-  ( -u N  +  ( 1  -  2 ) )  =  ( -u N  +  -u 1 )
45 negcl 9606 . . . . . . . . . . . . . . . 16  |-  ( N  e.  CC  ->  -u N  e.  CC )
46 addsubass 9616 . . . . . . . . . . . . . . . . 17  |-  ( (
-u N  e.  CC  /\  1  e.  CC  /\  2  e.  CC )  ->  ( ( -u N  +  1 )  - 
2 )  =  (
-u N  +  ( 1  -  2 ) ) )
4737, 3, 46mp3an23 1301 . . . . . . . . . . . . . . . 16  |-  ( -u N  e.  CC  ->  ( ( -u N  + 
1 )  -  2 )  =  ( -u N  +  ( 1  -  2 ) ) )
4845, 47syl 16 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  (
( -u N  +  1 )  -  2 )  =  ( -u N  +  ( 1  -  2 ) ) )
49 negdi 9662 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  CC  /\  1  e.  CC )  -> 
-u ( N  + 
1 )  =  (
-u N  +  -u
1 ) )
5037, 49mpan2 666 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  -u ( N  +  1 )  =  ( -u N  +  -u 1 ) )
5144, 48, 503eqtr4a 2499 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  (
( -u N  +  1 )  -  2 )  =  -u ( N  + 
1 ) )
5251oveq1d 6105 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( -u ( N  +  1
)  /  2 ) )
53 peano2cn 9537 . . . . . . . . . . . . . . . 16  |-  ( -u N  e.  CC  ->  (
-u N  +  1 )  e.  CC )
5445, 53syl 16 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  ( -u N  +  1 )  e.  CC )
55 2cnne0 10532 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  CC  /\  2  =/=  0 )
56 divsubdir 10023 . . . . . . . . . . . . . . . 16  |-  ( ( ( -u N  + 
1 )  e.  CC  /\  2  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
( -u N  +  1 )  -  2 )  /  2 )  =  ( ( ( -u N  +  1 )  /  2 )  -  ( 2  /  2
) ) )
573, 55, 56mp3an23 1301 . . . . . . . . . . . . . . 15  |-  ( (
-u N  +  1 )  e.  CC  ->  ( ( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( ( ( -u N  + 
1 )  /  2
)  -  ( 2  /  2 ) ) )
5854, 57syl 16 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( ( ( -u N  + 
1 )  /  2
)  -  ( 2  /  2 ) ) )
59 2div2e1 10440 . . . . . . . . . . . . . . . 16  |-  ( 2  /  2 )  =  1
6059eqcomi 2445 . . . . . . . . . . . . . . 15  |-  1  =  ( 2  / 
2 )
6160oveq2i 6101 . . . . . . . . . . . . . 14  |-  ( ( ( -u N  + 
1 )  /  2
)  -  1 )  =  ( ( (
-u N  +  1 )  /  2 )  -  ( 2  / 
2 ) )
6258, 61syl6reqr 2492 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  ( ( ( -u N  + 
1 )  -  2 )  /  2 ) )
63 peano2cn 9537 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
64 divneg 10022 . . . . . . . . . . . . . . 15  |-  ( ( ( N  +  1 )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
653, 4, 64mp3an23 1301 . . . . . . . . . . . . . 14  |-  ( ( N  +  1 )  e.  CC  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
6663, 65syl 16 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
6752, 62, 663eqtr4d 2483 . . . . . . . . . . . 12  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  -u (
( N  +  1 )  /  2 ) )
6819, 67syl 16 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  -u (
( N  +  1 )  /  2 ) )
6968eleq1d 2507 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (
( ( ( -u N  +  1 )  /  2 )  - 
1 )  e.  ZZ  <->  -u ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
7036, 69syl5ib 219 . . . . . . . . 9  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  -> 
-u ( ( N  +  1 )  / 
2 )  e.  ZZ ) )
71 znegcl 10676 . . . . . . . . 9  |-  ( -u ( ( N  + 
1 )  /  2
)  e.  ZZ  ->  -u -u ( ( N  + 
1 )  /  2
)  e.  ZZ )
7270, 71syl6 33 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  -> 
-u -u ( ( N  +  1 )  / 
2 )  e.  ZZ ) )
73 peano2re 9538 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
7473recnd 9408 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  CC )
7574halfcld 10565 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (
( N  +  1 )  /  2 )  e.  CC )
7675negnegd 9706 . . . . . . . . 9  |-  ( N  e.  RR  ->  -u -u (
( N  +  1 )  /  2 )  =  ( ( N  +  1 )  / 
2 ) )
7776eleq1d 2507 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u -u ( ( N  + 
1 )  /  2
)  e.  ZZ  <->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
7872, 77sylibd 214 . . . . . . 7  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  ->  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
7935, 78syl5 32 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  NN  ->  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
8034, 79sylan9r 653 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( -.  ( -u N  /  2 )  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  ZZ ) )
8131, 80syld 44 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( -.  ( N  /  2 )  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
8210, 18, 813jaodan 1279 . . 3  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  ->  ( -.  ( N  /  2
)  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
831, 82sylbi 195 . 2  |-  ( N  e.  ZZ  ->  ( -.  ( N  /  2
)  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
8483orrd 378 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    \/ w3o 959    = wceq 1364    e. wcel 1761    =/= wne 2604  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    - cmin 9591   -ucneg 9592    / cdiv 9989   NNcn 10318   2c2 10367   ZZcz 10642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643
This theorem is referenced by:  zeo2  10724  iseralt  13158  abssinper  21939  atantayl2  22292  basellem3  22379  chtub  22510  lgseisenlem1  22647
  Copyright terms: Public domain W3C validator