MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Structured version   Unicode version

Theorem zbtwnre 10949
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) )
Distinct variable group:    x, A

Proof of Theorem zbtwnre
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 zmin 10947 . 2  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
2 zre 10648 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  RR )
3 zre 10648 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  x  e.  RR )
4 peano2rem 9673 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
53, 4syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
x  -  1 )  e.  RR )
6 ltletr 9464 . . . . . . . . . . . . . 14  |-  ( ( ( x  -  1 )  e.  RR  /\  A  e.  RR  /\  y  e.  RR )  ->  (
( ( x  - 
1 )  <  A  /\  A  <_  y )  ->  ( x  - 
1 )  <  y
) )
75, 6syl3an1 1251 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  A  e.  RR  /\  y  e.  RR )  ->  (
( ( x  - 
1 )  <  A  /\  A  <_  y )  ->  ( x  - 
1 )  <  y
) )
873expa 1187 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  RR )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  (
x  -  1 )  <  y ) )
92, 8sylan2 474 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  (
x  -  1 )  <  y ) )
10 zlem1lt 10694 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  <_  y  <->  ( x  -  1 )  <  y ) )
1110adantlr 714 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( x  <_ 
y  <->  ( x  - 
1 )  <  y
) )
129, 11sylibrd 234 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  x  <_  y ) )
1312exp4b 607 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( y  e.  ZZ  ->  ( ( x  - 
1 )  <  A  ->  ( A  <_  y  ->  x  <_  y )
) ) )
1413com23 78 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  ->  ( y  e.  ZZ  ->  ( A  <_  y  ->  x  <_  y )
) ) )
1514ralrimdv 2803 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  ->  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
165ltnrd 9506 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  -.  ( x  -  1
)  <  ( x  -  1 ) )
17 peano2zm 10686 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x  -  1 )  e.  ZZ )
18 zlem1lt 10694 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( x  -  1
)  e.  ZZ )  ->  ( x  <_ 
( x  -  1 )  <->  ( x  - 
1 )  <  (
x  -  1 ) ) )
1917, 18mpdan 668 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
x  <_  ( x  -  1 )  <->  ( x  -  1 )  < 
( x  -  1 ) ) )
2016, 19mtbird 301 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  -.  x  <_  ( x  - 
1 ) )
2120ad2antrr 725 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  -.  x  <_  ( x  - 
1 ) )
22 lenlt 9451 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( x  -  1
)  e.  RR )  ->  ( A  <_ 
( x  -  1 )  <->  -.  ( x  -  1 )  < 
A ) )
235, 22sylan2 474 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( A  <_  (
x  -  1 )  <->  -.  ( x  -  1 )  <  A ) )
2423ancoms 453 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A  <_  (
x  -  1 )  <->  -.  ( x  -  1 )  <  A ) )
2524adantr 465 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( A  <_  ( x  - 
1 )  <->  -.  (
x  -  1 )  <  A ) )
26 breq2 4294 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  ( A  <_  y  <->  A  <_  ( x  -  1 ) ) )
27 breq2 4294 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  (
x  <_  y  <->  x  <_  ( x  -  1 ) ) )
2826, 27imbi12d 320 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
( A  <_  y  ->  x  <_  y )  <->  ( A  <_  ( x  -  1 )  ->  x  <_  ( x  - 
1 ) ) ) )
2928rspcv 3067 . . . . . . . . . . . . 13  |-  ( ( x  -  1 )  e.  ZZ  ->  ( A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) ) )
3017, 29syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) ) )
3130imp 429 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) )
3231adantlr 714 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( A  <_  ( x  - 
1 )  ->  x  <_  ( x  -  1 ) ) )
3325, 32sylbird 235 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( -.  ( x  -  1 )  <  A  ->  x  <_  ( x  - 
1 ) ) )
3421, 33mt3d 125 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  (
x  -  1 )  <  A )
3534ex 434 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  ->  ( x  -  1 )  < 
A ) )
3615, 35impbid 191 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
37 1re 9383 . . . . . . . 8  |-  1  e.  RR
38 ltsubadd 9807 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( x  -  1 )  <  A  <->  x  <  ( A  +  1 ) ) )
3937, 38mp3an2 1302 . . . . . . 7  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  x  <  ( A  + 
1 ) ) )
403, 39sylan 471 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  x  <  ( A  + 
1 ) ) )
4136, 40bitr3d 255 . . . . 5  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  <->  x  <  ( A  +  1 ) ) )
4241ancoms 453 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  <->  x  <  ( A  +  1 ) ) )
4342anbi2d 703 . . 3  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  <->  ( A  <_  x  /\  x  < 
( A  +  1 ) ) ) )
4443reubidva 2902 . 2  |-  ( A  e.  RR  ->  ( E! x  e.  ZZ  ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) )  <->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) ) )
451, 44mpbid 210 1  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2713   E!wreu 2715   class class class wbr 4290  (class class class)co 6089   RRcr 9279   1c1 9281    + caddc 9283    < clt 9416    <_ cle 9417    - cmin 9593   ZZcz 10644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-recs 6830  df-rdg 6864  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-sup 7689  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-n0 10578  df-z 10645  df-uz 10860
This theorem is referenced by:  rebtwnz  10950  qbtwnre  11167  dfceil2  11678
  Copyright terms: Public domain W3C validator