MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Structured version   Unicode version

Theorem zbtwnre 11205
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) )
Distinct variable group:    x, A

Proof of Theorem zbtwnre
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 zmin 11203 . 2  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
2 zre 10889 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  RR )
3 zre 10889 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  x  e.  RR )
4 peano2rem 9905 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
53, 4syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
x  -  1 )  e.  RR )
6 ltletr 9693 . . . . . . . . . . . . . 14  |-  ( ( ( x  -  1 )  e.  RR  /\  A  e.  RR  /\  y  e.  RR )  ->  (
( ( x  - 
1 )  <  A  /\  A  <_  y )  ->  ( x  - 
1 )  <  y
) )
75, 6syl3an1 1261 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  A  e.  RR  /\  y  e.  RR )  ->  (
( ( x  - 
1 )  <  A  /\  A  <_  y )  ->  ( x  - 
1 )  <  y
) )
873expa 1196 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  RR )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  (
x  -  1 )  <  y ) )
92, 8sylan2 474 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  (
x  -  1 )  <  y ) )
10 zlem1lt 10936 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  <_  y  <->  ( x  -  1 )  <  y ) )
1110adantlr 714 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( x  <_ 
y  <->  ( x  - 
1 )  <  y
) )
129, 11sylibrd 234 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  x  <_  y ) )
1312exp4b 607 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( y  e.  ZZ  ->  ( ( x  - 
1 )  <  A  ->  ( A  <_  y  ->  x  <_  y )
) ) )
1413com23 78 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  ->  ( y  e.  ZZ  ->  ( A  <_  y  ->  x  <_  y )
) ) )
1514ralrimdv 2873 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  ->  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
165ltnrd 9736 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  -.  ( x  -  1
)  <  ( x  -  1 ) )
17 peano2zm 10928 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x  -  1 )  e.  ZZ )
18 zlem1lt 10936 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( x  -  1
)  e.  ZZ )  ->  ( x  <_ 
( x  -  1 )  <->  ( x  - 
1 )  <  (
x  -  1 ) ) )
1917, 18mpdan 668 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
x  <_  ( x  -  1 )  <->  ( x  -  1 )  < 
( x  -  1 ) ) )
2016, 19mtbird 301 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  -.  x  <_  ( x  - 
1 ) )
2120ad2antrr 725 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  -.  x  <_  ( x  - 
1 ) )
22 lenlt 9680 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( x  -  1
)  e.  RR )  ->  ( A  <_ 
( x  -  1 )  <->  -.  ( x  -  1 )  < 
A ) )
235, 22sylan2 474 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( A  <_  (
x  -  1 )  <->  -.  ( x  -  1 )  <  A ) )
2423ancoms 453 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A  <_  (
x  -  1 )  <->  -.  ( x  -  1 )  <  A ) )
2524adantr 465 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( A  <_  ( x  - 
1 )  <->  -.  (
x  -  1 )  <  A ) )
26 breq2 4460 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  ( A  <_  y  <->  A  <_  ( x  -  1 ) ) )
27 breq2 4460 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  (
x  <_  y  <->  x  <_  ( x  -  1 ) ) )
2826, 27imbi12d 320 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
( A  <_  y  ->  x  <_  y )  <->  ( A  <_  ( x  -  1 )  ->  x  <_  ( x  - 
1 ) ) ) )
2928rspcv 3206 . . . . . . . . . . . . 13  |-  ( ( x  -  1 )  e.  ZZ  ->  ( A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) ) )
3017, 29syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) ) )
3130imp 429 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) )
3231adantlr 714 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( A  <_  ( x  - 
1 )  ->  x  <_  ( x  -  1 ) ) )
3325, 32sylbird 235 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( -.  ( x  -  1 )  <  A  ->  x  <_  ( x  - 
1 ) ) )
3421, 33mt3d 125 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  (
x  -  1 )  <  A )
3534ex 434 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  ->  ( x  -  1 )  < 
A ) )
3615, 35impbid 191 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
37 1re 9612 . . . . . . . 8  |-  1  e.  RR
38 ltsubadd 10043 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( x  -  1 )  <  A  <->  x  <  ( A  +  1 ) ) )
3937, 38mp3an2 1312 . . . . . . 7  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  x  <  ( A  + 
1 ) ) )
403, 39sylan 471 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  x  <  ( A  + 
1 ) ) )
4136, 40bitr3d 255 . . . . 5  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  <->  x  <  ( A  +  1 ) ) )
4241ancoms 453 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  <->  x  <  ( A  +  1 ) ) )
4342anbi2d 703 . . 3  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  <->  ( A  <_  x  /\  x  < 
( A  +  1 ) ) ) )
4443reubidva 3041 . 2  |-  ( A  e.  RR  ->  ( E! x  e.  ZZ  ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) )  <->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) ) )
451, 44mpbid 210 1  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E!wreu 2809   class class class wbr 4456  (class class class)co 6296   RRcr 9508   1c1 9510    + caddc 9512    < clt 9645    <_ cle 9646    - cmin 9824   ZZcz 10885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107
This theorem is referenced by:  rebtwnz  11206  qbtwnre  11423  dfceil2  11971
  Copyright terms: Public domain W3C validator