MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddsubgo Structured version   Unicode version

Theorem zaddsubgo 25756
Description: The integers under addition comprise a subgroup of the complex numbers under addition. (Contributed by Paul Chapman, 25-Apr-2008.) (New usage is discouraged.)
Assertion
Ref Expression
zaddsubgo  |-  (  +  |`  ( ZZ  X.  ZZ ) )  e.  (
SubGrpOp `  +  )

Proof of Theorem zaddsubgo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddablo 25752 . . 3  |-  +  e.  AbelOp
2 ablogrpo 25686 . . 3  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
31, 2ax-mp 5 . 2  |-  +  e.  GrpOp
4 ax-addf 9600 . . . 4  |-  +  :
( CC  X.  CC )
--> CC
54fdmi 5718 . . 3  |-  dom  +  =  ( CC  X.  CC )
63, 5grporn 25614 . 2  |-  CC  =  ran  +
7 cnid 25753 . 2  |-  0  =  (GId `  +  )
8 eqid 2402 . 2  |-  ( inv `  +  )  =  ( inv `  +  )
9 zsscn 10912 . 2  |-  ZZ  C_  CC
10 eqid 2402 . 2  |-  (  +  |`  ( ZZ  X.  ZZ ) )  =  (  +  |`  ( ZZ  X.  ZZ ) )
11 zaddcl 10944 . 2  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
12 0z 10915 . 2  |-  0  e.  ZZ
13 zcn 10909 . . . 4  |-  ( x  e.  ZZ  ->  x  e.  CC )
14 addinv 25754 . . . 4  |-  ( x  e.  CC  ->  (
( inv `  +  ) `  x )  =  -u x )
1513, 14syl 17 . . 3  |-  ( x  e.  ZZ  ->  (
( inv `  +  ) `  x )  =  -u x )
16 znegcl 10939 . . 3  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
1715, 16eqeltrd 2490 . 2  |-  ( x  e.  ZZ  ->  (
( inv `  +  ) `  x )  e.  ZZ )
183, 6, 7, 8, 9, 10, 11, 12, 17issubgoi 25712 1  |-  (  +  |`  ( ZZ  X.  ZZ ) )  e.  (
SubGrpOp `  +  )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1405    e. wcel 1842    X. cxp 4820    |` cres 4824   ` cfv 5568   CCcc 9519   0cc0 9521    + caddc 9524   -ucneg 9841   ZZcz 10904   GrpOpcgr 25588   invcgn 25590   AbelOpcablo 25683   SubGrpOpcsubgo 25703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-addf 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-n0 10836  df-z 10905  df-grpo 25593  df-gid 25594  df-ginv 25595  df-ablo 25684  df-subgo 25704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator