MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yoniso Structured version   Unicode version

Theorem yoniso 15401
Description: If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from  C into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
yoniso.y  |-  Y  =  (Yon `  C )
yoniso.o  |-  O  =  (oppCat `  C )
yoniso.s  |-  S  =  ( SetCat `  U )
yoniso.d  |-  D  =  (CatCat `  V )
yoniso.b  |-  B  =  ( Base `  D
)
yoniso.i  |-  I  =  (  Iso  `  D
)
yoniso.q  |-  Q  =  ( O FuncCat  S )
yoniso.e  |-  E  =  ( Qs  ran  ( 1st `  Y
) )
yoniso.v  |-  ( ph  ->  V  e.  X )
yoniso.c  |-  ( ph  ->  C  e.  B )
yoniso.u  |-  ( ph  ->  U  e.  W )
yoniso.h  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoniso.eb  |-  ( ph  ->  E  e.  B )
yoniso.1  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( x
( Hom  `  C ) y ) )  =  y )
Assertion
Ref Expression
yoniso  |-  ( ph  ->  Y  e.  ( C I E ) )
Distinct variable groups:    x, y, C    y, F    ph, x, y   
x, Y, y
Allowed substitution hints:    B( x, y)    D( x, y)    Q( x, y)    S( x, y)    U( x, y)    E( x, y)    F( x)    I( x, y)    O( x, y)    V( x, y)    W( x, y)    X( x, y)

Proof of Theorem yoniso
StepHypRef Expression
1 relfunc 15078 . . . 4  |-  Rel  ( C  Func  Q )
2 yoniso.y . . . . 5  |-  Y  =  (Yon `  C )
3 yoniso.d . . . . . . . 8  |-  D  =  (CatCat `  V )
4 yoniso.b . . . . . . . 8  |-  B  =  ( Base `  D
)
5 yoniso.v . . . . . . . 8  |-  ( ph  ->  V  e.  X )
63, 4, 5catcbas 15271 . . . . . . 7  |-  ( ph  ->  B  =  ( V  i^i  Cat ) )
7 inss2 3712 . . . . . . 7  |-  ( V  i^i  Cat )  C_  Cat
86, 7syl6eqss 3547 . . . . . 6  |-  ( ph  ->  B  C_  Cat )
9 yoniso.c . . . . . 6  |-  ( ph  ->  C  e.  B )
108, 9sseldd 3498 . . . . 5  |-  ( ph  ->  C  e.  Cat )
11 yoniso.o . . . . 5  |-  O  =  (oppCat `  C )
12 yoniso.s . . . . 5  |-  S  =  ( SetCat `  U )
13 yoniso.q . . . . 5  |-  Q  =  ( O FuncCat  S )
14 yoniso.u . . . . 5  |-  ( ph  ->  U  e.  W )
15 yoniso.h . . . . 5  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
162, 10, 11, 12, 13, 14, 15yoncl 15378 . . . 4  |-  ( ph  ->  Y  e.  ( C 
Func  Q ) )
17 1st2nd 6820 . . . 4  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  Y  =  <. ( 1st `  Y
) ,  ( 2nd `  Y ) >. )
181, 16, 17sylancr 663 . . 3  |-  ( ph  ->  Y  =  <. ( 1st `  Y ) ,  ( 2nd `  Y
) >. )
192, 11, 12, 13, 10, 14, 15yonffth 15400 . . . . 5  |-  ( ph  ->  Y  e.  ( ( C Full  Q )  i^i  ( C Faith  Q ) ) )
2018, 19eqeltrrd 2549 . . . 4  |-  ( ph  -> 
<. ( 1st `  Y
) ,  ( 2nd `  Y ) >.  e.  ( ( C Full  Q )  i^i  ( C Faith  Q
) ) )
21 eqid 2460 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
22 yoniso.e . . . . . 6  |-  E  =  ( Qs  ran  ( 1st `  Y
) )
2311oppccat 14967 . . . . . . . 8  |-  ( C  e.  Cat  ->  O  e.  Cat )
2410, 23syl 16 . . . . . . 7  |-  ( ph  ->  O  e.  Cat )
2512setccat 15259 . . . . . . . 8  |-  ( U  e.  W  ->  S  e.  Cat )
2614, 25syl 16 . . . . . . 7  |-  ( ph  ->  S  e.  Cat )
2713, 24, 26fuccat 15186 . . . . . 6  |-  ( ph  ->  Q  e.  Cat )
28 fvex 5867 . . . . . . . 8  |-  ( 1st `  Y )  e.  _V
2928rnex 6708 . . . . . . 7  |-  ran  ( 1st `  Y )  e. 
_V
3029a1i 11 . . . . . 6  |-  ( ph  ->  ran  ( 1st `  Y
)  e.  _V )
3113fucbas 15176 . . . . . . . . 9  |-  ( O 
Func  S )  =  (
Base `  Q )
32 1st2ndbr 6823 . . . . . . . . . 10  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
) )
331, 16, 32sylancr 663 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
3421, 31, 33funcf1 15082 . . . . . . . 8  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) --> ( O 
Func  S ) )
35 ffn 5722 . . . . . . . 8  |-  ( ( 1st `  Y ) : ( Base `  C
) --> ( O  Func  S )  ->  ( 1st `  Y )  Fn  ( Base `  C ) )
3634, 35syl 16 . . . . . . 7  |-  ( ph  ->  ( 1st `  Y
)  Fn  ( Base `  C ) )
37 dffn3 5729 . . . . . . 7  |-  ( ( 1st `  Y )  Fn  ( Base `  C
)  <->  ( 1st `  Y
) : ( Base `  C ) --> ran  ( 1st `  Y ) )
3836, 37sylib 196 . . . . . 6  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) --> ran  ( 1st `  Y ) )
3921, 22, 27, 30, 38ffthres2c 15156 . . . . 5  |-  ( ph  ->  ( ( 1st `  Y
) ( ( C Full 
Q )  i^i  ( C Faith  Q ) ) ( 2nd `  Y )  <-> 
( 1st `  Y
) ( ( C Full 
E )  i^i  ( C Faith  E ) ) ( 2nd `  Y ) ) )
40 df-br 4441 . . . . 5  |-  ( ( 1st `  Y ) ( ( C Full  Q
)  i^i  ( C Faith  Q ) ) ( 2nd `  Y )  <->  <. ( 1st `  Y ) ,  ( 2nd `  Y )
>.  e.  ( ( C Full 
Q )  i^i  ( C Faith  Q ) ) )
41 df-br 4441 . . . . 5  |-  ( ( 1st `  Y ) ( ( C Full  E
)  i^i  ( C Faith  E ) ) ( 2nd `  Y )  <->  <. ( 1st `  Y ) ,  ( 2nd `  Y )
>.  e.  ( ( C Full 
E )  i^i  ( C Faith  E ) ) )
4239, 40, 413bitr3g 287 . . . 4  |-  ( ph  ->  ( <. ( 1st `  Y
) ,  ( 2nd `  Y ) >.  e.  ( ( C Full  Q )  i^i  ( C Faith  Q
) )  <->  <. ( 1st `  Y ) ,  ( 2nd `  Y )
>.  e.  ( ( C Full 
E )  i^i  ( C Faith  E ) ) ) )
4320, 42mpbid 210 . . 3  |-  ( ph  -> 
<. ( 1st `  Y
) ,  ( 2nd `  Y ) >.  e.  ( ( C Full  E )  i^i  ( C Faith  E
) ) )
4418, 43eqeltrd 2548 . 2  |-  ( ph  ->  Y  e.  ( ( C Full  E )  i^i  ( C Faith  E ) ) )
45 fveq2 5857 . . . . . . . . 9  |-  ( ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  ( 1st `  ( ( 1st `  Y
) `  x )
)  =  ( 1st `  ( ( 1st `  Y
) `  y )
) )
4645fveq1d 5859 . . . . . . . 8  |-  ( ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  ( ( 1st `  ( ( 1st `  Y ) `  x
) ) `  x
)  =  ( ( 1st `  ( ( 1st `  Y ) `
 y ) ) `
 x ) )
4746fveq2d 5861 . . . . . . 7  |-  ( ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  ( F `  ( ( 1st `  (
( 1st `  Y
) `  x )
) `  x )
)  =  ( F `
 ( ( 1st `  ( ( 1st `  Y
) `  y )
) `  x )
) )
48 simpl 457 . . . . . . . . . 10  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) )  ->  x  e.  ( Base `  C
) )
4948, 48jca 532 . . . . . . . . 9  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) )  ->  (
x  e.  ( Base `  C )  /\  x  e.  ( Base `  C
) ) )
50 eleq1 2532 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
y  e.  ( Base `  C )  <->  x  e.  ( Base `  C )
) )
5150anbi2d 703 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
( x  e.  (
Base `  C )  /\  y  e.  ( Base `  C ) )  <-> 
( x  e.  (
Base `  C )  /\  x  e.  ( Base `  C ) ) ) )
5251anbi2d 703 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  <->  ( ph  /\  ( x  e.  (
Base `  C )  /\  x  e.  ( Base `  C ) ) ) ) )
53 fveq2 5857 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
( 1st `  Y
) `  y )  =  ( ( 1st `  Y ) `  x
) )
5453fveq2d 5861 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( 1st `  ( ( 1st `  Y ) `  y
) )  =  ( 1st `  ( ( 1st `  Y ) `
 x ) ) )
5554fveq1d 5859 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
( 1st `  (
( 1st `  Y
) `  y )
) `  x )  =  ( ( 1st `  ( ( 1st `  Y
) `  x )
) `  x )
)
5655fveq2d 5861 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  y
) ) `  x
) )  =  ( F `  ( ( 1st `  ( ( 1st `  Y ) `
 x ) ) `
 x ) ) )
57 id 22 . . . . . . . . . . . 12  |-  ( y  =  x  ->  y  =  x )
5856, 57eqeq12d 2482 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( F `  (
( 1st `  (
( 1st `  Y
) `  y )
) `  x )
)  =  y  <->  ( F `  ( ( 1st `  (
( 1st `  Y
) `  x )
) `  x )
)  =  x ) )
5952, 58imbi12d 320 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) ) )  ->  ( F `  ( ( 1st `  (
( 1st `  Y
) `  y )
) `  x )
)  =  y )  <-> 
( ( ph  /\  ( x  e.  ( Base `  C )  /\  x  e.  ( Base `  C ) ) )  ->  ( F `  ( ( 1st `  (
( 1st `  Y
) `  x )
) `  x )
)  =  x ) ) )
6010adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  C  e.  Cat )
61 simprr 756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  y  e.  ( Base `  C
) )
62 eqid 2460 . . . . . . . . . . . . 13  |-  ( Hom  `  C )  =  ( Hom  `  C )
63 simprl 755 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  x  e.  ( Base `  C
) )
642, 21, 60, 61, 62, 63yon11 15380 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  (
( 1st `  Y
) `  y )
) `  x )  =  ( x ( Hom  `  C )
y ) )
6564fveq2d 5861 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  y
) ) `  x
) )  =  ( F `  ( x ( Hom  `  C
) y ) ) )
66 yoniso.1 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( x
( Hom  `  C ) y ) )  =  y )
6765, 66eqtrd 2501 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  y
) ) `  x
) )  =  y )
6859, 67chvarv 1976 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  x  e.  ( Base `  C )
) )  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  x
) ) `  x
) )  =  x )
6949, 68sylan2 474 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  x
) ) `  x
) )  =  x )
7069, 67eqeq12d 2482 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( F `  (
( 1st `  (
( 1st `  Y
) `  x )
) `  x )
)  =  ( F `
 ( ( 1st `  ( ( 1st `  Y
) `  y )
) `  x )
)  <->  x  =  y
) )
7147, 70syl5ib 219 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  x  =  y ) )
7271ralrimivva 2878 . . . . 5  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) ( ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  x  =  y ) )
73 dff13 6145 . . . . 5  |-  ( ( 1st `  Y ) : ( Base `  C
) -1-1-> ( O  Func  S )  <->  ( ( 1st `  Y ) : (
Base `  C ) --> ( O  Func  S )  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) ( ( ( 1st `  Y ) `
 x )  =  ( ( 1st `  Y
) `  y )  ->  x  =  y ) ) )
7434, 72, 73sylanbrc 664 . . . 4  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) -1-1-> ( O 
Func  S ) )
75 f1f1orn 5818 . . . 4  |-  ( ( 1st `  Y ) : ( Base `  C
) -1-1-> ( O  Func  S )  ->  ( 1st `  Y ) : (
Base `  C ) -1-1-onto-> ran  ( 1st `  Y ) )
7674, 75syl 16 . . 3  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ran  ( 1st `  Y
) )
77 frn 5728 . . . . . 6  |-  ( ( 1st `  Y ) : ( Base `  C
) --> ( O  Func  S )  ->  ran  ( 1st `  Y )  C_  ( O  Func  S ) )
7834, 77syl 16 . . . . 5  |-  ( ph  ->  ran  ( 1st `  Y
)  C_  ( O  Func  S ) )
7922, 31ressbas2 14535 . . . . 5  |-  ( ran  ( 1st `  Y
)  C_  ( O  Func  S )  ->  ran  ( 1st `  Y )  =  ( Base `  E
) )
8078, 79syl 16 . . . 4  |-  ( ph  ->  ran  ( 1st `  Y
)  =  ( Base `  E ) )
81 f1oeq3 5800 . . . 4  |-  ( ran  ( 1st `  Y
)  =  ( Base `  E )  ->  (
( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ran  ( 1st `  Y
)  <->  ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ( Base `  E
) ) )
8280, 81syl 16 . . 3  |-  ( ph  ->  ( ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ran  ( 1st `  Y
)  <->  ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ( Base `  E
) ) )
8376, 82mpbid 210 . 2  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ( Base `  E
) )
84 eqid 2460 . . 3  |-  ( Base `  E )  =  (
Base `  E )
85 yoniso.eb . . 3  |-  ( ph  ->  E  e.  B )
86 yoniso.i . . 3  |-  I  =  (  Iso  `  D
)
873, 4, 21, 84, 5, 9, 85, 86catciso 15281 . 2  |-  ( ph  ->  ( Y  e.  ( C I E )  <-> 
( Y  e.  ( ( C Full  E )  i^i  ( C Faith  E
) )  /\  ( 1st `  Y ) : ( Base `  C
)
-1-1-onto-> ( Base `  E )
) ) )
8844, 83, 87mpbir2and 915 1  |-  ( ph  ->  Y  e.  ( C I E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106    i^i cin 3468    C_ wss 3469   <.cop 4026   class class class wbr 4440   ran crn 4993   Rel wrel 4997    Fn wfn 5574   -->wf 5575   -1-1->wf1 5576   -1-1-onto->wf1o 5578   ` cfv 5579  (class class class)co 6275   1stc1st 6772   2ndc2nd 6773   Basecbs 14479   ↾s cress 14480   Hom chom 14555   Catccat 14908   Hom f chomf 14910  oppCatcoppc 14956    Iso ciso 14991    Func cfunc 15070   Full cful 15118   Faith cfth 15119   FuncCat cfuc 15158   SetCatcsetc 15249  CatCatccatc 15268  Yoncyon 15365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-tpos 6945  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-fz 11662  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-hom 14568  df-cco 14569  df-cat 14912  df-cid 14913  df-homf 14914  df-comf 14915  df-oppc 14957  df-sect 14992  df-inv 14993  df-iso 14994  df-ssc 15029  df-resc 15030  df-subc 15031  df-func 15074  df-idfu 15075  df-cofu 15076  df-full 15120  df-fth 15121  df-nat 15159  df-fuc 15160  df-setc 15250  df-catc 15269  df-xpc 15288  df-1stf 15289  df-2ndf 15290  df-prf 15291  df-evlf 15329  df-curf 15330  df-hof 15366  df-yon 15367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator