MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffthlem Structured version   Unicode version

Theorem yonffthlem 15677
Description: Lemma for yonffth 15679. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yoneda.m  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
yonedainv.i  |-  I  =  (Inv `  R )
yonedainv.n  |-  N  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( u  e.  ( ( 1st `  f
) `  x )  |->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) x )  |->  ( ( ( x ( 2nd `  f ) y ) `  g
) `  u )
) ) ) )
Assertion
Ref Expression
yonffthlem  |-  ( ph  ->  Y  e.  ( ( C Full  Q )  i^i  ( C Faith  Q ) ) )
Distinct variable groups:    f, a,
g, x, y,  .1.    u, a, g, y, C, f, x    E, a, f, g, u, y    B, a, f, g, u, x, y    N, a    O, a, f, g, u, x, y    S, a, f, g, u, x, y    g, M, u, y    Q, a, f, g, u, x    T, f, g, u, y    ph, a,
f, g, u, x, y    u, R    Y, a, f, g, u, x, y    Z, a, f, g, u, x, y
Allowed substitution hints:    Q( y)    R( x, y, f, g, a)    T( x, a)    U( x, y, u, f, g, a)    .1. ( u)    E( x)    H( x, y, u, f, g, a)    I( x, y, u, f, g, a)    M( x, f, a)    N( x, y, u, f, g)    V( x, y, u, f, g, a)    W( x, y, u, f, g, a)

Proof of Theorem yonffthlem
Dummy variables  h  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 15277 . . 3  |-  Rel  ( C  Func  Q )
2 yoneda.y . . . 4  |-  Y  =  (Yon `  C )
3 yoneda.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 yoneda.o . . . 4  |-  O  =  (oppCat `  C )
5 yoneda.s . . . 4  |-  S  =  ( SetCat `  U )
6 yoneda.q . . . 4  |-  Q  =  ( O FuncCat  S )
7 yoneda.w . . . . 5  |-  ( ph  ->  V  e.  W )
8 yoneda.v . . . . . 6  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
98unssbd 3678 . . . . 5  |-  ( ph  ->  U  C_  V )
107, 9ssexd 4603 . . . 4  |-  ( ph  ->  U  e.  _V )
11 yoneda.u . . . 4  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
122, 3, 4, 5, 6, 10, 11yoncl 15657 . . 3  |-  ( ph  ->  Y  e.  ( C 
Func  Q ) )
13 1st2nd 6845 . . 3  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  Y  =  <. ( 1st `  Y
) ,  ( 2nd `  Y ) >. )
141, 12, 13sylancr 663 . 2  |-  ( ph  ->  Y  =  <. ( 1st `  Y ) ,  ( 2nd `  Y
) >. )
15 1st2ndbr 6848 . . . . 5  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
) )
161, 12, 15sylancr 663 . . . 4  |-  ( ph  ->  ( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
17 yoneda.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  C
)
186fucbas 15375 . . . . . . . . . . . . 13  |-  ( O 
Func  S )  =  (
Base `  Q )
1917, 18, 16funcf1 15281 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  Y
) : B --> ( O 
Func  S ) )
2019adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( 1st `  Y
) : B --> ( O 
Func  S ) )
21 simprr 757 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  w  e.  B )
2220, 21ffvelrnd 6033 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  Y
) `  w )  e.  ( O  Func  S
) )
23 simprl 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
z  e.  B )
24 opelxpi 5040 . . . . . . . . . 10  |-  ( ( ( ( 1st `  Y
) `  w )  e.  ( O  Func  S
)  /\  z  e.  B )  ->  <. (
( 1st `  Y
) `  w ) ,  z >.  e.  ( ( O  Func  S
)  X.  B ) )
2522, 23, 24syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  <. ( ( 1st `  Y
) `  w ) ,  z >.  e.  ( ( O  Func  S
)  X.  B ) )
26 yoneda.r . . . . . . . . . . . . . 14  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
2726fucbas 15375 . . . . . . . . . . . . 13  |-  ( ( Q  X.c  O )  Func  T
)  =  ( Base `  R )
28 yonedainv.i . . . . . . . . . . . . 13  |-  I  =  (Inv `  R )
29 yoneda.1 . . . . . . . . . . . . . . . . . 18  |-  .1.  =  ( Id `  C )
30 yoneda.t . . . . . . . . . . . . . . . . . 18  |-  T  =  ( SetCat `  V )
31 yoneda.h . . . . . . . . . . . . . . . . . 18  |-  H  =  (HomF
`  Q )
32 yoneda.e . . . . . . . . . . . . . . . . . 18  |-  E  =  ( O evalF  S )
33 yoneda.z . . . . . . . . . . . . . . . . . 18  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
342, 17, 29, 4, 5, 30, 6, 31, 26, 32, 33, 3, 7, 11, 8yonedalem1 15667 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Z  e.  ( ( Q  X.c  O ) 
Func  T )  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
) )
3534simpld 459 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Z  e.  ( ( Q  X.c  O )  Func  T
) )
36 funcrcl 15278 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  ( ( Q  X.c  O )  Func  T
)  ->  ( ( Q  X.c  O )  e.  Cat  /\  T  e.  Cat )
)
3735, 36syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Q  X.c  O
)  e.  Cat  /\  T  e.  Cat )
)
3837simpld 459 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Q  X.c  O )  e.  Cat )
3937simprd 463 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  Cat )
4026, 38, 39fuccat 15385 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  Cat )
4134simprd 463 . . . . . . . . . . . . 13  |-  ( ph  ->  E  e.  ( ( Q  X.c  O )  Func  T
) )
42 eqid 2457 . . . . . . . . . . . . 13  |-  (  Iso  `  R )  =  (  Iso  `  R )
43 yoneda.m . . . . . . . . . . . . . 14  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
44 yonedainv.n . . . . . . . . . . . . . 14  |-  N  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( u  e.  ( ( 1st `  f
) `  x )  |->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) x )  |->  ( ( ( x ( 2nd `  f ) y ) `  g
) `  u )
) ) ) )
452, 17, 29, 4, 5, 30, 6, 31, 26, 32, 33, 3, 7, 11, 8, 43, 28, 44yonedainv 15676 . . . . . . . . . . . . 13  |-  ( ph  ->  M ( Z I E ) N )
4627, 28, 40, 35, 41, 42, 45inviso2 15182 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ( E (  Iso  `  R
) Z ) )
47 eqid 2457 . . . . . . . . . . . . . 14  |-  ( Q  X.c  O )  =  ( Q  X.c  O )
484, 17oppcbas 15133 . . . . . . . . . . . . . 14  |-  B  =  ( Base `  O
)
4947, 18, 48xpcbas 15573 . . . . . . . . . . . . 13  |-  ( ( O  Func  S )  X.  B )  =  (
Base `  ( Q  X.c  O ) )
50 eqid 2457 . . . . . . . . . . . . 13  |-  ( ( Q  X.c  O ) Nat  T )  =  ( ( Q  X.c  O ) Nat  T )
51 eqid 2457 . . . . . . . . . . . . 13  |-  (  Iso  `  T )  =  (  Iso  `  T )
5226, 49, 50, 41, 35, 42, 51fuciso 15390 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  e.  ( E (  Iso  `  R
) Z )  <->  ( N  e.  ( E ( ( Q  X.c  O ) Nat  T ) Z )  /\  A. v  e.  ( ( O  Func  S )  X.  B ) ( N `
 v )  e.  ( ( ( 1st `  E ) `  v
) (  Iso  `  T
) ( ( 1st `  Z ) `  v
) ) ) ) )
5346, 52mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  ( E ( ( Q  X.c  O ) Nat  T ) Z )  /\  A. v  e.  ( ( O  Func  S )  X.  B ) ( N `
 v )  e.  ( ( ( 1st `  E ) `  v
) (  Iso  `  T
) ( ( 1st `  Z ) `  v
) ) ) )
5453simprd 463 . . . . . . . . . 10  |-  ( ph  ->  A. v  e.  ( ( O  Func  S
)  X.  B ) ( N `  v
)  e.  ( ( ( 1st `  E
) `  v )
(  Iso  `  T ) ( ( 1st `  Z
) `  v )
) )
5554adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  A. v  e.  (
( O  Func  S
)  X.  B ) ( N `  v
)  e.  ( ( ( 1st `  E
) `  v )
(  Iso  `  T ) ( ( 1st `  Z
) `  v )
) )
56 fveq2 5872 . . . . . . . . . . . 12  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( N `  v
)  =  ( N `
 <. ( ( 1st `  Y ) `  w
) ,  z >.
) )
57 df-ov 6299 . . . . . . . . . . . 12  |-  ( ( ( 1st `  Y
) `  w ) N z )  =  ( N `  <. ( ( 1st `  Y
) `  w ) ,  z >. )
5856, 57syl6eqr 2516 . . . . . . . . . . 11  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( N `  v
)  =  ( ( ( 1st `  Y
) `  w ) N z ) )
59 fveq2 5872 . . . . . . . . . . . . 13  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( 1st `  E
) `  v )  =  ( ( 1st `  E ) `  <. ( ( 1st `  Y
) `  w ) ,  z >. )
)
60 df-ov 6299 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  Y
) `  w )
( 1st `  E
) z )  =  ( ( 1st `  E
) `  <. ( ( 1st `  Y ) `
 w ) ,  z >. )
6159, 60syl6eqr 2516 . . . . . . . . . . . 12  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( 1st `  E
) `  v )  =  ( ( ( 1st `  Y ) `
 w ) ( 1st `  E ) z ) )
62 fveq2 5872 . . . . . . . . . . . . 13  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( 1st `  Z
) `  v )  =  ( ( 1st `  Z ) `  <. ( ( 1st `  Y
) `  w ) ,  z >. )
)
63 df-ov 6299 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  Y
) `  w )
( 1st `  Z
) z )  =  ( ( 1st `  Z
) `  <. ( ( 1st `  Y ) `
 w ) ,  z >. )
6462, 63syl6eqr 2516 . . . . . . . . . . . 12  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( 1st `  Z
) `  v )  =  ( ( ( 1st `  Y ) `
 w ) ( 1st `  Z ) z ) )
6561, 64oveq12d 6314 . . . . . . . . . . 11  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( ( 1st `  E ) `  v
) (  Iso  `  T
) ( ( 1st `  Z ) `  v
) )  =  ( ( ( ( 1st `  Y ) `  w
) ( 1st `  E
) z ) (  Iso  `  T )
( ( ( 1st `  Y ) `  w
) ( 1st `  Z
) z ) ) )
6658, 65eleq12d 2539 . . . . . . . . . 10  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( N `  v )  e.  ( ( ( 1st `  E
) `  v )
(  Iso  `  T ) ( ( 1st `  Z
) `  v )
)  <->  ( ( ( 1st `  Y ) `
 w ) N z )  e.  ( ( ( ( 1st `  Y ) `  w
) ( 1st `  E
) z ) (  Iso  `  T )
( ( ( 1st `  Y ) `  w
) ( 1st `  Z
) z ) ) ) )
6766rspcv 3206 . . . . . . . . 9  |-  ( <.
( ( 1st `  Y
) `  w ) ,  z >.  e.  ( ( O  Func  S
)  X.  B )  ->  ( A. v  e.  ( ( O  Func  S )  X.  B ) ( N `  v
)  e.  ( ( ( 1st `  E
) `  v )
(  Iso  `  T ) ( ( 1st `  Z
) `  v )
)  ->  ( (
( 1st `  Y
) `  w ) N z )  e.  ( ( ( ( 1st `  Y ) `
 w ) ( 1st `  E ) z ) (  Iso  `  T ) ( ( ( 1st `  Y
) `  w )
( 1st `  Z
) z ) ) ) )
6825, 55, 67sylc 60 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z )  e.  ( ( ( ( 1st `  Y
) `  w )
( 1st `  E
) z ) (  Iso  `  T )
( ( ( 1st `  Y ) `  w
) ( 1st `  Z
) z ) ) )
694oppccat 15137 . . . . . . . . . . . . 13  |-  ( C  e.  Cat  ->  O  e.  Cat )
703, 69syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  O  e.  Cat )
7170adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  O  e.  Cat )
725setccat 15490 . . . . . . . . . . . . 13  |-  ( U  e.  _V  ->  S  e.  Cat )
7310, 72syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Cat )
7473adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  S  e.  Cat )
7532, 71, 74, 48, 22, 23evlf1 15615 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) ( 1st `  E
) z )  =  ( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )
)
763adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  C  e.  Cat )
77 eqid 2457 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
782, 17, 76, 21, 77, 23yon11 15659 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )  =  ( z ( Hom  `  C )
w ) )
7975, 78eqtrd 2498 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) ( 1st `  E
) z )  =  ( z ( Hom  `  C ) w ) )
807adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  V  e.  W )
8111adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  ran  ( Hom f  `  C )  C_  U )
828adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ran  ( Hom f  `  Q
)  u.  U ) 
C_  V )
832, 17, 29, 4, 5, 30, 6, 31, 26, 32, 33, 76, 80, 81, 82, 22, 23yonedalem21 15668 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) ( 1st `  Z
) z )  =  ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
8479, 83oveq12d 6314 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( ( 1st `  Y ) `
 w ) ( 1st `  E ) z ) (  Iso  `  T ) ( ( ( 1st `  Y
) `  w )
( 1st `  Z
) z ) )  =  ( ( z ( Hom  `  C
) w ) (  Iso  `  T )
( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) ) )
8568, 84eleqtrd 2547 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z )  e.  ( ( z ( Hom  `  C
) w ) (  Iso  `  T )
( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) ) )
869adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  U  C_  V )
87 eqid 2457 . . . . . . . . . . . . 13  |-  ( Base `  S )  =  (
Base `  S )
88 relfunc 15277 . . . . . . . . . . . . . 14  |-  Rel  ( O  Func  S )
89 1st2ndbr 6848 . . . . . . . . . . . . . 14  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 w )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  w
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  w )
) )
9088, 22, 89sylancr 663 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( 1st `  (
( 1st `  Y
) `  w )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  w )
) )
9148, 87, 90funcf1 15281 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( 1st `  (
( 1st `  Y
) `  w )
) : B --> ( Base `  S ) )
9291, 23ffvelrnd 6033 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )  e.  ( Base `  S
) )
935, 10setcbas 15483 . . . . . . . . . . . 12  |-  ( ph  ->  U  =  ( Base `  S ) )
9493adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  U  =  ( Base `  S ) )
9592, 94eleqtrrd 2548 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )  e.  U )
9678, 95eqeltrrd 2546 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( Hom  `  C ) w )  e.  U )
9786, 96sseldd 3500 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( Hom  `  C ) w )  e.  V )
98 eqid 2457 . . . . . . . . . 10  |-  ( Hom f  `  Q )  =  ( Hom f  `  Q )
99 eqid 2457 . . . . . . . . . . 11  |-  ( O Nat 
S )  =  ( O Nat  S )
1006, 99fuchom 15376 . . . . . . . . . 10  |-  ( O Nat 
S )  =  ( Hom  `  Q )
10120, 23ffvelrnd 6033 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  Y
) `  z )  e.  ( O  Func  S
) )
10298, 18, 100, 101, 22homfval 15107 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  z
) ( Hom f  `  Q ) ( ( 1st `  Y
) `  w )
)  =  ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) )
1038unssad 3677 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( Hom f  `  Q ) 
C_  V )
104103adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  ran  ( Hom f  `  Q )  C_  V )
10598, 18homffn 15108 . . . . . . . . . . . 12  |-  ( Hom f  `  Q )  Fn  (
( O  Func  S
)  X.  ( O 
Func  S ) )
106105a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( Hom f  `  Q )  Fn  ( ( O  Func  S )  X.  ( O 
Func  S ) ) )
107 fnovrn 6449 . . . . . . . . . . 11  |-  ( ( ( Hom f  `  Q )  Fn  ( ( O  Func  S )  X.  ( O 
Func  S ) )  /\  ( ( 1st `  Y
) `  z )  e.  ( O  Func  S
)  /\  ( ( 1st `  Y ) `  w )  e.  ( O  Func  S )
)  ->  ( (
( 1st `  Y
) `  z )
( Hom f  `  Q ) ( ( 1st `  Y
) `  w )
)  e.  ran  ( Hom f  `  Q ) )
108106, 101, 22, 107syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  z
) ( Hom f  `  Q ) ( ( 1st `  Y
) `  w )
)  e.  ran  ( Hom f  `  Q ) )
109104, 108sseldd 3500 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  z
) ( Hom f  `  Q ) ( ( 1st `  Y
) `  w )
)  e.  V )
110102, 109eqeltrrd 2546 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) )  e.  V
)
11130, 80, 97, 110, 51setciso 15496 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( ( 1st `  Y ) `
 w ) N z )  e.  ( ( z ( Hom  `  C ) w ) (  Iso  `  T
) ( ( ( 1st `  Y ) `
 z ) ( O Nat  S ) ( ( 1st `  Y
) `  w )
) )  <->  ( (
( 1st `  Y
) `  w ) N z ) : ( z ( Hom  `  C ) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) ) )
11285, 111mpbid 210 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z ) : ( z ( Hom  `  C )
w ) -1-1-onto-> ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
11376adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  C  e.  Cat )
114113adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  C  e.  Cat )
11523adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  z  e.  B )
116115adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  z  e.  B )
117 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  y  e.  B )
1182, 17, 114, 116, 77, 117yon11 15659 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  z )
) `  y )  =  ( y ( Hom  `  C )
z ) )
119118eqcomd 2465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
y ( Hom  `  C
) z )  =  ( ( 1st `  (
( 1st `  Y
) `  z )
) `  y )
)
120114adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  C  e.  Cat )
12121ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  w  e.  B )
122116adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  z  e.  B )
123 eqid 2457 . . . . . . . . . . . . . . 15  |-  (comp `  C )  =  (comp `  C )
124117adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  y  e.  B )
125 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  g  e.  ( y ( Hom  `  C ) z ) )
126 simpllr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  h  e.  ( z ( Hom  `  C ) w ) )
1272, 17, 120, 121, 77, 122, 123, 124, 125, 126yon12 15660 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  ( (
( z ( 2nd `  ( ( 1st `  Y
) `  w )
) y ) `  g ) `  h
)  =  ( h ( <. y ,  z
>. (comp `  C )
w ) g ) )
1282, 17, 120, 122, 77, 121, 123, 124, 126, 125yon2 15661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  ( (
( ( z ( 2nd `  Y ) w ) `  h
) `  y ) `  g )  =  ( h ( <. y ,  z >. (comp `  C ) w ) g ) )
129127, 128eqtr4d 2501 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  ( (
( z ( 2nd `  ( ( 1st `  Y
) `  w )
) y ) `  g ) `  h
)  =  ( ( ( ( z ( 2nd `  Y ) w ) `  h
) `  y ) `  g ) )
130119, 129mpteq12dva 4534 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
g  e.  ( y ( Hom  `  C
) z )  |->  ( ( ( z ( 2nd `  ( ( 1st `  Y ) `
 w ) ) y ) `  g
) `  h )
)  =  ( g  e.  ( ( 1st `  ( ( 1st `  Y
) `  z )
) `  y )  |->  ( ( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
) `  g )
) )
13116adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
13217, 77, 100, 131, 23, 21funcf2 15283 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C )
w ) --> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) )
133132ffvelrnda 6032 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
z ( 2nd `  Y
) w ) `  h )  e.  ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) )
13499, 133nat1st2nd 15366 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
z ( 2nd `  Y
) w ) `  h )  e.  (
<. ( 1st `  (
( 1st `  Y
) `  z )
) ,  ( 2nd `  ( ( 1st `  Y
) `  z )
) >. ( O Nat  S
) <. ( 1st `  (
( 1st `  Y
) `  w )
) ,  ( 2nd `  ( ( 1st `  Y
) `  w )
) >. ) )
135134adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( z ( 2nd `  Y ) w ) `
 h )  e.  ( <. ( 1st `  (
( 1st `  Y
) `  z )
) ,  ( 2nd `  ( ( 1st `  Y
) `  z )
) >. ( O Nat  S
) <. ( 1st `  (
( 1st `  Y
) `  w )
) ,  ( 2nd `  ( ( 1st `  Y
) `  w )
) >. ) )
136 eqid 2457 . . . . . . . . . . . . . . 15  |-  ( Hom  `  S )  =  ( Hom  `  S )
13799, 135, 48, 136, 117natcl 15368 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( ( z ( 2nd `  Y ) w ) `  h
) `  y )  e.  ( ( ( 1st `  ( ( 1st `  Y
) `  z )
) `  y )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  w )
) `  y )
) )
13810adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  U  e.  _V )
139138ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  U  e.  _V )
14019ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( 1st `  Y ) : B --> ( O  Func  S ) )
141140, 115ffvelrnd 6033 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( ( 1st `  Y ) `  z )  e.  ( O  Func  S )
)
142 1st2ndbr 6848 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 z )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  z
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  z )
) )
14388, 141, 142sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( 1st `  ( ( 1st `  Y
) `  z )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  z )
) )
14448, 87, 143funcf1 15281 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( 1st `  ( ( 1st `  Y
) `  z )
) : B --> ( Base `  S ) )
145144ffvelrnda 6032 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  z )
) `  y )  e.  ( Base `  S
) )
14694ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  U  =  ( Base `  S
) )
147145, 146eleqtrrd 2548 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  z )
) `  y )  e.  U )
14891adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( 1st `  ( ( 1st `  Y
) `  w )
) : B --> ( Base `  S ) )
149148ffvelrnda 6032 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  w )
) `  y )  e.  ( Base `  S
) )
150149, 146eleqtrrd 2548 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  w )
) `  y )  e.  U )
1515, 139, 136, 147, 150elsetchom 15486 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
)  e.  ( ( ( 1st `  (
( 1st `  Y
) `  z )
) `  y )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  w )
) `  y )
)  <->  ( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
) : ( ( 1st `  ( ( 1st `  Y ) `
 z ) ) `
 y ) --> ( ( 1st `  (
( 1st `  Y
) `  w )
) `  y )
) )
152137, 151mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( ( z ( 2nd `  Y ) w ) `  h
) `  y ) : ( ( 1st `  ( ( 1st `  Y
) `  z )
) `  y ) --> ( ( 1st `  (
( 1st `  Y
) `  w )
) `  y )
)
153152feqmptd 5926 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( ( z ( 2nd `  Y ) w ) `  h
) `  y )  =  ( g  e.  ( ( 1st `  (
( 1st `  Y
) `  z )
) `  y )  |->  ( ( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
) `  g )
) )
154130, 153eqtr4d 2501 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
g  e.  ( y ( Hom  `  C
) z )  |->  ( ( ( z ( 2nd `  ( ( 1st `  Y ) `
 w ) ) y ) `  g
) `  h )
)  =  ( ( ( z ( 2nd `  Y ) w ) `
 h ) `  y ) )
155154mpteq2dva 4543 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C )
z )  |->  ( ( ( z ( 2nd `  ( ( 1st `  Y
) `  w )
) y ) `  g ) `  h
) ) )  =  ( y  e.  B  |->  ( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
) ) )
15680adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  V  e.  W )
15781adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ran  ( Hom f  `  C )  C_  U
)
15882adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
15922adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( ( 1st `  Y ) `  w )  e.  ( O  Func  S )
)
16078eleq2d 2527 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( h  e.  ( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )  <->  h  e.  ( z ( Hom  `  C )
w ) ) )
161160biimpar 485 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  h  e.  ( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )
)
1622, 17, 29, 4, 5, 30, 6, 31, 26, 32, 33, 113, 156, 157, 158, 159, 115, 44, 161yonedalem4a 15670 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
( ( 1st `  Y
) `  w ) N z ) `  h )  =  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) z )  |->  ( ( ( z ( 2nd `  ( ( 1st `  Y ) `
 w ) ) y ) `  g
) `  h )
) ) )
16399, 134, 48natfn 15369 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
z ( 2nd `  Y
) w ) `  h )  Fn  B
)
164 dffn5 5918 . . . . . . . . . . 11  |-  ( ( ( z ( 2nd `  Y ) w ) `
 h )  Fn  B  <->  ( ( z ( 2nd `  Y
) w ) `  h )  =  ( y  e.  B  |->  ( ( ( z ( 2nd `  Y ) w ) `  h
) `  y )
) )
165163, 164sylib 196 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
z ( 2nd `  Y
) w ) `  h )  =  ( y  e.  B  |->  ( ( ( z ( 2nd `  Y ) w ) `  h
) `  y )
) )
166155, 162, 1653eqtr4d 2508 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
( ( 1st `  Y
) `  w ) N z ) `  h )  =  ( ( z ( 2nd `  Y ) w ) `
 h ) )
167166mpteq2dva 4543 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( h  e.  ( z ( Hom  `  C
) w )  |->  ( ( ( ( 1st `  Y ) `  w
) N z ) `
 h ) )  =  ( h  e.  ( z ( Hom  `  C ) w ) 
|->  ( ( z ( 2nd `  Y ) w ) `  h
) ) )
168 f1of 5822 . . . . . . . . . 10  |-  ( ( ( ( 1st `  Y
) `  w ) N z ) : ( z ( Hom  `  C ) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
)  ->  ( (
( 1st `  Y
) `  w ) N z ) : ( z ( Hom  `  C ) w ) --> ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
169112, 168syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z ) : ( z ( Hom  `  C )
w ) --> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) )
170169feqmptd 5926 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z )  =  ( h  e.  ( z ( Hom  `  C ) w ) 
|->  ( ( ( ( 1st `  Y ) `
 w ) N z ) `  h
) ) )
171132feqmptd 5926 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( 2nd `  Y ) w )  =  ( h  e.  ( z ( Hom  `  C ) w ) 
|->  ( ( z ( 2nd `  Y ) w ) `  h
) ) )
172167, 170, 1713eqtr4d 2508 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z )  =  ( z ( 2nd `  Y ) w ) )
173 f1oeq1 5813 . . . . . . 7  |-  ( ( ( ( 1st `  Y
) `  w ) N z )  =  ( z ( 2nd `  Y ) w )  ->  ( ( ( ( 1st `  Y
) `  w ) N z ) : ( z ( Hom  `  C ) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
)  <->  ( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C
) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) ) )
174172, 173syl 16 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( ( 1st `  Y ) `
 w ) N z ) : ( z ( Hom  `  C
) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
)  <->  ( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C
) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) ) )
175112, 174mpbid 210 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C )
w ) -1-1-onto-> ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
176175ralrimivva 2878 . . . 4  |-  ( ph  ->  A. z  e.  B  A. w  e.  B  ( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C )
w ) -1-1-onto-> ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
17717, 77, 100isffth2 15331 . . . 4  |-  ( ( 1st `  Y ) ( ( C Full  Q
)  i^i  ( C Faith  Q ) ) ( 2nd `  Y )  <->  ( ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
)  /\  A. z  e.  B  A. w  e.  B  ( z
( 2nd `  Y
) w ) : ( z ( Hom  `  C ) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) ) )
17816, 176, 177sylanbrc 664 . . 3  |-  ( ph  ->  ( 1st `  Y
) ( ( C Full 
Q )  i^i  ( C Faith  Q ) ) ( 2nd `  Y ) )
179 df-br 4457 . . 3  |-  ( ( 1st `  Y ) ( ( C Full  Q
)  i^i  ( C Faith  Q ) ) ( 2nd `  Y )  <->  <. ( 1st `  Y ) ,  ( 2nd `  Y )
>.  e.  ( ( C Full 
Q )  i^i  ( C Faith  Q ) ) )
180178, 179sylib 196 . 2  |-  ( ph  -> 
<. ( 1st `  Y
) ,  ( 2nd `  Y ) >.  e.  ( ( C Full  Q )  i^i  ( C Faith  Q
) ) )
18114, 180eqeltrd 2545 1  |-  ( ph  ->  Y  e.  ( ( C Full  Q )  i^i  ( C Faith  Q ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    u. cun 3469    i^i cin 3470    C_ wss 3471   <.cop 4038   class class class wbr 4456    |-> cmpt 4515    X. cxp 5006   ran crn 5009   Rel wrel 5013    Fn wfn 5589   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   1stc1st 6797   2ndc2nd 6798  tpos ctpos 6972   Basecbs 14643   Hom chom 14722  compcco 14723   Catccat 15080   Idccid 15081   Hom f chomf 15082  oppCatcoppc 15126  Invcinv 15160    Iso ciso 15161    Func cfunc 15269    o.func ccofu 15271   Full cful 15317   Faith cfth 15318   Nat cnat 15356   FuncCat cfuc 15357   SetCatcsetc 15480    X.c cxpc 15563    1stF c1stf 15564    2ndF c2ndf 15565   ⟨,⟩F cprf 15566   evalF cevlf 15604  HomFchof 15643  Yoncyon 15644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-hom 14735  df-cco 14736  df-cat 15084  df-cid 15085  df-homf 15086  df-comf 15087  df-oppc 15127  df-sect 15162  df-inv 15163  df-iso 15164  df-ssc 15225  df-resc 15226  df-subc 15227  df-func 15273  df-cofu 15275  df-full 15319  df-fth 15320  df-nat 15358  df-fuc 15359  df-setc 15481  df-xpc 15567  df-1stf 15568  df-2ndf 15569  df-prf 15570  df-evlf 15608  df-curf 15609  df-hof 15645  df-yon 15646
This theorem is referenced by:  yonffth  15679
  Copyright terms: Public domain W3C validator