MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4b Structured version   Unicode version

Theorem yonedalem4b 15107
Description: Lemma for yoneda 15114. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yonedalem21.f  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
yonedalem21.x  |-  ( ph  ->  X  e.  B )
yonedalem4.n  |-  N  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( u  e.  ( ( 1st `  f
) `  x )  |->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) x )  |->  ( ( ( x ( 2nd `  f ) y ) `  g
) `  u )
) ) ) )
yonedalem4.p  |-  ( ph  ->  A  e.  ( ( 1st `  F ) `
 X ) )
yonedalem4b.p  |-  ( ph  ->  P  e.  B )
yonedalem4b.g  |-  ( ph  ->  G  e.  ( P ( Hom  `  C
) X ) )
Assertion
Ref Expression
yonedalem4b  |-  ( ph  ->  ( ( ( ( F N X ) `
 A ) `  P ) `  G
)  =  ( ( ( X ( 2nd `  F ) P ) `
 G ) `  A ) )
Distinct variable groups:    f, g, x, y,  .1.    u, g, A, y    u, f, C, g, x, y   
f, E, g, u, y    f, F, g, u, x, y    B, f, g, u, x, y   
f, G, g, x, y    f, O, g, u, x, y    S, f, g, u, x, y    Q, f, g, u, x    T, f, g, u, y    P, f, g, x, y    ph, f, g, u, x, y    u, R    f, Y, g, u, x, y   
f, Z, g, u, x, y    f, X, g, u, x, y
Allowed substitution hints:    A( x, f)    P( u)    Q( y)    R( x, y, f, g)    T( x)    U( x, y, u, f, g)    .1. ( u)    E( x)    G( u)    H( x, y, u, f, g)    N( x, y, u, f, g)    V( x, y, u, f, g)    W( x, y, u, f, g)

Proof of Theorem yonedalem4b
StepHypRef Expression
1 yoneda.y . . . . 5  |-  Y  =  (Yon `  C )
2 yoneda.b . . . . 5  |-  B  =  ( Base `  C
)
3 yoneda.1 . . . . 5  |-  .1.  =  ( Id `  C )
4 yoneda.o . . . . 5  |-  O  =  (oppCat `  C )
5 yoneda.s . . . . 5  |-  S  =  ( SetCat `  U )
6 yoneda.t . . . . 5  |-  T  =  ( SetCat `  V )
7 yoneda.q . . . . 5  |-  Q  =  ( O FuncCat  S )
8 yoneda.h . . . . 5  |-  H  =  (HomF
`  Q )
9 yoneda.r . . . . 5  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
10 yoneda.e . . . . 5  |-  E  =  ( O evalF  S )
11 yoneda.z . . . . 5  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
12 yoneda.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
13 yoneda.w . . . . 5  |-  ( ph  ->  V  e.  W )
14 yoneda.u . . . . 5  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
15 yoneda.v . . . . 5  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
16 yonedalem21.f . . . . 5  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
17 yonedalem21.x . . . . 5  |-  ( ph  ->  X  e.  B )
18 yonedalem4.n . . . . 5  |-  N  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( u  e.  ( ( 1st `  f
) `  x )  |->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) x )  |->  ( ( ( x ( 2nd `  f ) y ) `  g
) `  u )
) ) ) )
19 yonedalem4.p . . . . 5  |-  ( ph  ->  A  e.  ( ( 1st `  F ) `
 X ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19yonedalem4a 15106 . . . 4  |-  ( ph  ->  ( ( F N X ) `  A
)  =  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) ) ) )
2120fveq1d 5714 . . 3  |-  ( ph  ->  ( ( ( F N X ) `  A ) `  P
)  =  ( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) ) `  P
) )
2221fveq1d 5714 . 2  |-  ( ph  ->  ( ( ( ( F N X ) `
 A ) `  P ) `  G
)  =  ( ( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) ) `  P
) `  G )
)
23 eqidd 2444 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) )  =  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) ) )
24 yonedalem4b.p . . . 4  |-  ( ph  ->  P  e.  B )
25 ovex 6137 . . . . . 6  |-  ( y ( Hom  `  C
) X )  e. 
_V
2625mptex 5969 . . . . 5  |-  ( g  e.  ( y ( Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) )  e. 
_V
2726a1i 11 . . . 4  |-  ( (
ph  /\  y  =  P )  ->  (
g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
)  e.  _V )
28 yonedalem4b.g . . . . . . 7  |-  ( ph  ->  G  e.  ( P ( Hom  `  C
) X ) )
2928adantr 465 . . . . . 6  |-  ( (
ph  /\  y  =  P )  ->  G  e.  ( P ( Hom  `  C ) X ) )
30 simpr 461 . . . . . . 7  |-  ( (
ph  /\  y  =  P )  ->  y  =  P )
3130oveq1d 6127 . . . . . 6  |-  ( (
ph  /\  y  =  P )  ->  (
y ( Hom  `  C
) X )  =  ( P ( Hom  `  C ) X ) )
3229, 31eleqtrrd 2520 . . . . 5  |-  ( (
ph  /\  y  =  P )  ->  G  e.  ( y ( Hom  `  C ) X ) )
33 fvex 5722 . . . . . 6  |-  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A )  e.  _V
3433a1i 11 . . . . 5  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  (
( ( X ( 2nd `  F ) y ) `  g
) `  A )  e.  _V )
35 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  y  =  P )
3635oveq2d 6128 . . . . . . 7  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  ( X ( 2nd `  F
) y )  =  ( X ( 2nd `  F ) P ) )
37 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  g  =  G )
3836, 37fveq12d 5718 . . . . . 6  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  (
( X ( 2nd `  F ) y ) `
 g )  =  ( ( X ( 2nd `  F ) P ) `  G
) )
3938fveq1d 5714 . . . . 5  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  (
( ( X ( 2nd `  F ) y ) `  g
) `  A )  =  ( ( ( X ( 2nd `  F
) P ) `  G ) `  A
) )
4032, 34, 39fvmptdv2 5808 . . . 4  |-  ( (
ph  /\  y  =  P )  ->  (
( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C ) X ) 
|->  ( ( ( X ( 2nd `  F
) y ) `  g ) `  A
) ) ) `  P )  =  ( g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
)  ->  ( (
( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) ) `  P
) `  G )  =  ( ( ( X ( 2nd `  F
) P ) `  G ) `  A
) ) )
41 nfmpt1 4402 . . . 4  |-  F/_ y
( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) )
42 nffvmpt1 5720 . . . . . 6  |-  F/_ y
( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C ) X ) 
|->  ( ( ( X ( 2nd `  F
) y ) `  g ) `  A
) ) ) `  P )
43 nfcv 2589 . . . . . 6  |-  F/_ y G
4442, 43nffv 5719 . . . . 5  |-  F/_ y
( ( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) ) ) `
 P ) `  G )
4544nfeq1 2603 . . . 4  |-  F/ y ( ( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) ) ) `
 P ) `  G )  =  ( ( ( X ( 2nd `  F ) P ) `  G
) `  A )
4624, 27, 40, 41, 45fvmptdf 5806 . . 3  |-  ( ph  ->  ( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C ) X ) 
|->  ( ( ( X ( 2nd `  F
) y ) `  g ) `  A
) ) )  =  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) )  ->  (
( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C ) X ) 
|->  ( ( ( X ( 2nd `  F
) y ) `  g ) `  A
) ) ) `  P ) `  G
)  =  ( ( ( X ( 2nd `  F ) P ) `
 G ) `  A ) ) )
4723, 46mpd 15 . 2  |-  ( ph  ->  ( ( ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) ) ) `
 P ) `  G )  =  ( ( ( X ( 2nd `  F ) P ) `  G
) `  A )
)
4822, 47eqtrd 2475 1  |-  ( ph  ->  ( ( ( ( F N X ) `
 A ) `  P ) `  G
)  =  ( ( ( X ( 2nd `  F ) P ) `
 G ) `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2993    u. cun 3347    C_ wss 3349   <.cop 3904    e. cmpt 4371   ran crn 4862   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114   1stc1st 6596   2ndc2nd 6597  tpos ctpos 6765   Basecbs 14195   Hom chom 14270   Catccat 14623   Idccid 14624   Hom f chomf 14625  oppCatcoppc 14671    Func cfunc 14785    o.func ccofu 14787   FuncCat cfuc 14873   SetCatcsetc 14964    X.c cxpc 14999    1stF c1stf 15000    2ndF c2ndf 15001   ⟨,⟩F cprf 15002   evalF cevlf 15040  HomFchof 15079  Yoncyon 15080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117
This theorem is referenced by:  yonedalem4c  15108  yonedainv  15112
  Copyright terms: Public domain W3C validator