MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3b Structured version   Unicode version

Theorem yonedalem3b 15402
Description: Lemma for yoneda 15406. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yonedalem21.f  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
yonedalem21.x  |-  ( ph  ->  X  e.  B )
yonedalem22.g  |-  ( ph  ->  G  e.  ( O 
Func  S ) )
yonedalem22.p  |-  ( ph  ->  P  e.  B )
yonedalem22.a  |-  ( ph  ->  A  e.  ( F ( O Nat  S ) G ) )
yonedalem22.k  |-  ( ph  ->  K  e.  ( P ( Hom  `  C
) X ) )
yonedalem3.m  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
Assertion
Ref Expression
yonedalem3b  |-  ( ph  ->  ( ( G M P ) ( <.
( F ( 1st `  Z ) X ) ,  ( G ( 1st `  Z ) P ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) )  =  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K ) ( <.
( F ( 1st `  Z ) X ) ,  ( F ( 1st `  E ) X ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( F M X ) ) )
Distinct variable groups:    f, a, x,  .1.    A, a    C, a, f, x    E, a, f    F, a, f, x    K, a    B, a, f, x    G, a, f, x    O, a, f, x    S, a, f, x    Q, a, f, x    T, f    P, a, f, x    ph, a,
f, x    Y, a,
f, x    Z, a,
f, x    X, a,
f, x
Allowed substitution hints:    A( x, f)    R( x, f, a)    T( x, a)    U( x, f, a)    E( x)    H( x, f, a)    K( x, f)    M( x, f, a)    V( x, f, a)    W( x, f, a)

Proof of Theorem yonedalem3b
Dummy variables  b 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6290 . . . . . . . 8  |-  ( b  =  a  ->  ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b )  =  ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) )
21oveq1d 6297 . . . . . . 7  |-  ( b  =  a  ->  (
( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  =  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) )
32fveq1d 5866 . . . . . 6  |-  ( b  =  a  ->  (
( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P )  =  ( ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) )
43fveq1d 5866 . . . . 5  |-  ( b  =  a  ->  (
( ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
)  =  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )
54cbvmptv 4538 . . . 4  |-  ( b  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )
6 yoneda.q . . . . . . . . 9  |-  Q  =  ( O FuncCat  S )
7 eqid 2467 . . . . . . . . 9  |-  ( O Nat 
S )  =  ( O Nat  S )
8 yoneda.o . . . . . . . . . 10  |-  O  =  (oppCat `  C )
9 yoneda.b . . . . . . . . . 10  |-  B  =  ( Base `  C
)
108, 9oppcbas 14970 . . . . . . . . 9  |-  B  =  ( Base `  O
)
11 eqid 2467 . . . . . . . . 9  |-  (comp `  S )  =  (comp `  S )
12 eqid 2467 . . . . . . . . 9  |-  (comp `  Q )  =  (comp `  Q )
13 eqid 2467 . . . . . . . . . . . 12  |-  ( Hom  `  C )  =  ( Hom  `  C )
146, 7fuchom 15184 . . . . . . . . . . . 12  |-  ( O Nat 
S )  =  ( Hom  `  Q )
15 relfunc 15085 . . . . . . . . . . . . 13  |-  Rel  ( C  Func  Q )
16 yoneda.y . . . . . . . . . . . . . 14  |-  Y  =  (Yon `  C )
17 yoneda.c . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  Cat )
18 yoneda.s . . . . . . . . . . . . . 14  |-  S  =  ( SetCat `  U )
19 yoneda.w . . . . . . . . . . . . . . 15  |-  ( ph  ->  V  e.  W )
20 yoneda.v . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
2120unssbd 3682 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  C_  V )
2219, 21ssexd 4594 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  _V )
23 yoneda.u . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
2416, 17, 8, 18, 6, 22, 23yoncl 15385 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  ( C 
Func  Q ) )
25 1st2ndbr 6830 . . . . . . . . . . . . 13  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
) )
2615, 24, 25sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
27 yonedalem22.p . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  B )
28 yonedalem21.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  B )
299, 13, 14, 26, 27, 28funcf2 15091 . . . . . . . . . . 11  |-  ( ph  ->  ( P ( 2nd `  Y ) X ) : ( P ( Hom  `  C ) X ) --> ( ( ( 1st `  Y
) `  P )
( O Nat  S ) ( ( 1st `  Y
) `  X )
) )
30 yonedalem22.k . . . . . . . . . . 11  |-  ( ph  ->  K  e.  ( P ( Hom  `  C
) X ) )
3129, 30ffvelrnd 6020 . . . . . . . . . 10  |-  ( ph  ->  ( ( P ( 2nd `  Y ) X ) `  K
)  e.  ( ( ( 1st `  Y
) `  P )
( O Nat  S ) ( ( 1st `  Y
) `  X )
) )
3231adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( P ( 2nd `  Y
) X ) `  K )  e.  ( ( ( 1st `  Y
) `  P )
( O Nat  S ) ( ( 1st `  Y
) `  X )
) )
33 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) )
34 yonedalem22.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ( F ( O Nat  S ) G ) )
3534adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  A  e.  ( F ( O Nat  S
) G ) )
366, 7, 12, 33, 35fuccocl 15187 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a )  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) G ) )
3727adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  P  e.  B
)
386, 7, 10, 11, 12, 32, 36, 37fuccoval 15186 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P )  =  ( ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) `  P
) ( <. (
( 1st `  (
( 1st `  Y
) `  P )
) `  P ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  G
) `  P )
) ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) ) )
396, 7, 10, 11, 12, 33, 35, 37fuccoval 15186 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) `  P
)  =  ( ( A `  P ) ( <. ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) ,  ( ( 1st `  F ) `  P
) >. (comp `  S
) ( ( 1st `  G ) `  P
) ) ( a `
 P ) ) )
4022adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  U  e.  _V )
41 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( Base `  S )  =  (
Base `  S )
42 relfunc 15085 . . . . . . . . . . . . . . . 16  |-  Rel  ( O  Func  S )
436fucbas 15183 . . . . . . . . . . . . . . . . . 18  |-  ( O 
Func  S )  =  (
Base `  Q )
449, 43, 26funcf1 15089 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1st `  Y
) : B --> ( O 
Func  S ) )
4544, 28ffvelrnd 6020 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1st `  Y
) `  X )  e.  ( O  Func  S
) )
46 1st2ndbr 6830 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 X )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  X
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  X )
) )
4742, 45, 46sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  X )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  X )
) )
4810, 41, 47funcf1 15089 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  X )
) : B --> ( Base `  S ) )
49 eqidd 2468 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  =  B )
5018, 22setcbas 15259 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  =  ( Base `  S ) )
5149, 50feq23d 5724 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) : B --> U  <->  ( 1st `  ( ( 1st `  Y
) `  X )
) : B --> ( Base `  S ) ) )
5248, 51mpbird 232 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  X )
) : B --> U )
5352, 27ffvelrnd 6020 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )  e.  U )
5453adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P )  e.  U )
55 yonedalem21.f . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
56 1st2ndbr 6830 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  ( O  Func  S )  /\  F  e.  ( O  Func  S
) )  ->  ( 1st `  F ) ( O  Func  S )
( 2nd `  F
) )
5742, 55, 56sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  F
) ( O  Func  S ) ( 2nd `  F
) )
5810, 41, 57funcf1 15089 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1st `  F
) : B --> ( Base `  S ) )
5949, 50feq23d 5724 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  F
) : B --> U  <->  ( 1st `  F ) : B --> ( Base `  S )
) )
6058, 59mpbird 232 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1st `  F
) : B --> U )
6160, 27ffvelrnd 6020 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1st `  F
) `  P )  e.  U )
6261adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  F ) `  P
)  e.  U )
63 yonedalem22.g . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e.  ( O 
Func  S ) )
64 1st2ndbr 6830 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  ( O  Func  S )  /\  G  e.  ( O  Func  S
) )  ->  ( 1st `  G ) ( O  Func  S )
( 2nd `  G
) )
6542, 63, 64sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  G
) ( O  Func  S ) ( 2nd `  G
) )
6610, 41, 65funcf1 15089 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1st `  G
) : B --> ( Base `  S ) )
6766, 27ffvelrnd 6020 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1st `  G
) `  P )  e.  ( Base `  S
) )
6867, 50eleqtrrd 2558 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1st `  G
) `  P )  e.  U )
6968adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  G ) `  P
)  e.  U )
707, 33nat1st2nd 15174 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  a  e.  (
<. ( 1st `  (
( 1st `  Y
) `  X )
) ,  ( 2nd `  ( ( 1st `  Y
) `  X )
) >. ( O Nat  S
) <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
)
71 eqid 2467 . . . . . . . . . . . . 13  |-  ( Hom  `  S )  =  ( Hom  `  S )
727, 70, 10, 71, 37natcl 15176 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  P )  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
( Hom  `  S ) ( ( 1st `  F
) `  P )
) )
7318, 40, 71, 54, 62elsetchom 15262 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P )  e.  ( ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P )
( Hom  `  S ) ( ( 1st `  F
) `  P )
)  <->  ( a `  P ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) --> ( ( 1st `  F
) `  P )
) )
7472, 73mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  P ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) --> ( ( 1st `  F
) `  P )
)
757, 34nat1st2nd 15174 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. ( O Nat  S ) <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
767, 75, 10, 71, 27natcl 15176 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A `  P
)  e.  ( ( ( 1st `  F
) `  P )
( Hom  `  S ) ( ( 1st `  G
) `  P )
) )
7718, 22, 71, 61, 68elsetchom 15262 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A `  P )  e.  ( ( ( 1st `  F
) `  P )
( Hom  `  S ) ( ( 1st `  G
) `  P )
)  <->  ( A `  P ) : ( ( 1st `  F
) `  P ) --> ( ( 1st `  G
) `  P )
) )
7876, 77mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  ( A `  P
) : ( ( 1st `  F ) `
 P ) --> ( ( 1st `  G
) `  P )
)
7978adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( A `  P ) : ( ( 1st `  F
) `  P ) --> ( ( 1st `  G
) `  P )
)
8018, 40, 11, 54, 62, 69, 74, 79setcco 15264 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A `
 P ) (
<. ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) ,  ( ( 1st `  F ) `  P
) >. (comp `  S
) ( ( 1st `  G ) `  P
) ) ( a `
 P ) )  =  ( ( A `
 P )  o.  ( a `  P
) ) )
8139, 80eqtrd 2508 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) `  P
)  =  ( ( A `  P )  o.  ( a `  P ) ) )
8281oveq1d 6297 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) `  P ) ( <. ( ( 1st `  ( ( 1st `  Y
) `  P )
) `  P ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  G
) `  P )
) ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) )  =  ( ( ( A `  P )  o.  (
a `  P )
) ( <. (
( 1st `  (
( 1st `  Y
) `  P )
) `  P ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  G
) `  P )
) ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) ) )
8344, 27ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  Y
) `  P )  e.  ( O  Func  S
) )
84 1st2ndbr 6830 . . . . . . . . . . . . . 14  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 P )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  P
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  P )
) )
8542, 83, 84sylancr 663 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  P )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  P )
) )
8610, 41, 85funcf1 15089 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  P )
) : B --> ( Base `  S ) )
8786, 27ffvelrnd 6020 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )  e.  ( Base `  S
) )
8887, 50eleqtrrd 2558 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )  e.  U )
8988adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  ( ( 1st `  Y
) `  P )
) `  P )  e.  U )
907, 31nat1st2nd 15174 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ( 2nd `  Y ) X ) `  K
)  e.  ( <.
( 1st `  (
( 1st `  Y
) `  P )
) ,  ( 2nd `  ( ( 1st `  Y
) `  P )
) >. ( O Nat  S
) <. ( 1st `  (
( 1st `  Y
) `  X )
) ,  ( 2nd `  ( ( 1st `  Y
) `  X )
) >. ) )
917, 90, 10, 71, 27natcl 15176 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
)  e.  ( ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
9218, 22, 71, 88, 53elsetchom 15262 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
)  e.  ( ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)  <->  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
9391, 92mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)
9493adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)
95 fco 5739 . . . . . . . . . 10  |-  ( ( ( A `  P
) : ( ( 1st `  F ) `
 P ) --> ( ( 1st `  G
) `  P )  /\  ( a `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 P ) --> ( ( 1st `  F
) `  P )
)  ->  ( ( A `  P )  o.  ( a `  P
) ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) --> ( ( 1st `  G
) `  P )
)
9679, 74, 95syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A `
 P )  o.  ( a `  P
) ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) --> ( ( 1st `  G
) `  P )
)
9718, 40, 11, 89, 54, 69, 94, 96setcco 15264 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A `  P )  o.  ( a `  P ) ) (
<. ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  G
) `  P )
) ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) )  =  ( ( ( A `  P )  o.  (
a `  P )
)  o.  ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) ) )
9838, 82, 973eqtrd 2512 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P )  =  ( ( ( A `
 P )  o.  ( a `  P
) )  o.  (
( ( P ( 2nd `  Y ) X ) `  K
) `  P )
) )
9998fveq1d 5866 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
)  =  ( ( ( ( A `  P )  o.  (
a `  P )
)  o.  ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) ) `  (  .1.  `  P )
) )
100 yoneda.1 . . . . . . . . . 10  |-  .1.  =  ( Id `  C )
1019, 13, 100, 17, 27catidcl 14933 . . . . . . . . 9  |-  ( ph  ->  (  .1.  `  P
)  e.  ( P ( Hom  `  C
) P ) )
10216, 9, 17, 27, 13, 27yon11 15387 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )  =  ( P ( Hom  `  C ) P ) )
103101, 102eleqtrrd 2558 . . . . . . . 8  |-  ( ph  ->  (  .1.  `  P
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) )
104103adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  P )  e.  ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )
)
105 fvco3 5942 . . . . . . 7  |-  ( ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )  /\  (  .1.  `  P
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) )  ->  ( ( ( ( A `  P
)  o.  ( a `
 P ) )  o.  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) ) `  (  .1.  `  P ) )  =  ( ( ( A `  P )  o.  ( a `  P ) ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) )
10694, 104, 105syl2anc 661 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( A `  P
)  o.  ( a `
 P ) )  o.  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) ) `  (  .1.  `  P ) )  =  ( ( ( A `  P )  o.  ( a `  P ) ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) )
10794, 104ffvelrnd 6020 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) `  (  .1.  `  P ) )  e.  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P )
)
108 fvco3 5942 . . . . . . . 8  |-  ( ( ( a `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 P ) --> ( ( 1st `  F
) `  P )  /\  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) )  e.  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)  ->  ( (
( A `  P
)  o.  ( a `
 P ) ) `
 ( ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) `  (  .1.  `  P ) ) )  =  ( ( A `  P ) `
 ( ( a `
 P ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) ) )
10974, 107, 108syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A `  P )  o.  ( a `  P ) ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) )  =  ( ( A `
 P ) `  ( ( a `  P ) `  (
( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) ) )
11017adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  C  e.  Cat )
11128adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  X  e.  B
)
112 eqid 2467 . . . . . . . . . . . 12  |-  (comp `  C )  =  (comp `  C )
11330adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  K  e.  ( P ( Hom  `  C
) X ) )
114101adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  P )  e.  ( P ( Hom  `  C
) P ) )
11516, 9, 110, 37, 13, 111, 112, 37, 113, 114yon2 15389 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) `  (  .1.  `  P ) )  =  ( K (
<. P ,  P >. (comp `  C ) X ) (  .1.  `  P
) ) )
1169, 13, 100, 110, 37, 112, 111, 113catrid 14935 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( K (
<. P ,  P >. (comp `  C ) X ) (  .1.  `  P
) )  =  K )
117115, 116eqtrd 2508 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) `  (  .1.  `  P ) )  =  K )
118117fveq2d 5868 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) )  =  ( ( a `
 P ) `  K ) )
119 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( Hom  `  O )  =  ( Hom  `  O )
12010, 119, 71, 47, 28, 27funcf2 15091 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X ( 2nd `  ( ( 1st `  Y
) `  X )
) P ) : ( X ( Hom  `  O ) P ) --> ( ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
12113, 8oppchom 14967 . . . . . . . . . . . . . . 15  |-  ( X ( Hom  `  O
) P )  =  ( P ( Hom  `  C ) X )
12230, 121syl6eleqr 2566 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  ( X ( Hom  `  O
) P ) )
123120, 122ffvelrnd 6020 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( X ( 2nd `  ( ( 1st `  Y ) `
 X ) ) P ) `  K
)  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
12452, 28ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )  e.  U )
12518, 22, 71, 124, 53elsetchom 15262 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K )  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)  <->  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
126123, 125mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( X ( 2nd `  ( ( 1st `  Y ) `
 X ) ) P ) `  K
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)
127126adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)
1289, 13, 100, 17, 28catidcl 14933 . . . . . . . . . . . . 13  |-  ( ph  ->  (  .1.  `  X
)  e.  ( X ( Hom  `  C
) X ) )
12916, 9, 17, 28, 13, 28yon11 15387 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )  =  ( X ( Hom  `  C ) X ) )
130128, 129eleqtrrd 2558 . . . . . . . . . . . 12  |-  ( ph  ->  (  .1.  `  X
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) )
131130adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  X )  e.  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
)
132 fvco3 5942 . . . . . . . . . . 11  |-  ( ( ( ( X ( 2nd `  ( ( 1st `  Y ) `
 X ) ) P ) `  K
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )  /\  (  .1.  `  X
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) )  ->  ( ( ( a `  P )  o.  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) ) `  (  .1.  `  X )
)  =  ( ( a `  P ) `
 ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) ) ) )
133127, 131, 132syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( a `  P )  o.  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) ) `  (  .1.  `  X )
)  =  ( ( a `  P ) `
 ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) ) ) )
134122adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  K  e.  ( X ( Hom  `  O
) P ) )
1357, 70, 10, 119, 11, 111, 37, 134nati 15178 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) (
<. ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  F
) `  P )
) ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K ) ( <.
( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) ,  ( ( 1st `  F ) `  X
) >. (comp `  S
) ( ( 1st `  F ) `  P
) ) ( a `
 X ) ) )
136124adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  X )  e.  U )
13718, 40, 11, 136, 54, 62, 127, 74setcco 15264 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) (
<. ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  F
) `  P )
) ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) )  =  ( ( a `  P )  o.  (
( X ( 2nd `  ( ( 1st `  Y
) `  X )
) P ) `  K ) ) )
13860, 28ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  F
) `  X )  e.  U )
139138adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  F ) `  X
)  e.  U )
1407, 70, 10, 71, 111natcl 15176 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  X )  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  X )
) )
14118, 40, 71, 136, 139elsetchom 15262 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 X )  e.  ( ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  X )
)  <->  ( a `  X ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  F
) `  X )
) )
142140, 141mpbid 210 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  X ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  F
) `  X )
)
14310, 119, 71, 57, 28, 27funcf2 15091 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X ( 2nd `  F ) P ) : ( X ( Hom  `  O ) P ) --> ( ( ( 1st `  F
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  P )
) )
144143, 122ffvelrnd 6020 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( X ( 2nd `  F ) P ) `  K
)  e.  ( ( ( 1st `  F
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  P )
) )
14518, 22, 71, 138, 61elsetchom 15262 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( X ( 2nd `  F
) P ) `  K )  e.  ( ( ( 1st `  F
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  P )
)  <->  ( ( X ( 2nd `  F
) P ) `  K ) : ( ( 1st `  F
) `  X ) --> ( ( 1st `  F
) `  P )
) )
146144, 145mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X ( 2nd `  F ) P ) `  K
) : ( ( 1st `  F ) `
 X ) --> ( ( 1st `  F
) `  P )
)
147146adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( X ( 2nd `  F
) P ) `  K ) : ( ( 1st `  F
) `  X ) --> ( ( 1st `  F
) `  P )
)
14818, 40, 11, 136, 139, 62, 142, 147setcco 15264 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( X ( 2nd `  F
) P ) `  K ) ( <.
( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) ,  ( ( 1st `  F ) `  X
) >. (comp `  S
) ( ( 1st `  F ) `  P
) ) ( a `
 X ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K )  o.  (
a `  X )
) )
149135, 137, 1483eqtr3d 2516 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P )  o.  ( ( X ( 2nd `  ( ( 1st `  Y ) `
 X ) ) P ) `  K
) )  =  ( ( ( X ( 2nd `  F ) P ) `  K
)  o.  ( a `
 X ) ) )
150149fveq1d 5866 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( a `  P )  o.  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) ) `  (  .1.  `  X )
)  =  ( ( ( ( X ( 2nd `  F ) P ) `  K
)  o.  ( a `
 X ) ) `
 (  .1.  `  X ) ) )
151128adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  X )  e.  ( X ( Hom  `  C
) X ) )
15216, 9, 110, 111, 13, 111, 112, 37, 113, 151yon12 15388 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) )  =  ( (  .1.  `  X ) ( <. P ,  X >. (comp `  C ) X ) K ) )
1539, 13, 100, 110, 37, 112, 111, 113catlid 14934 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( (  .1.  `  X ) ( <. P ,  X >. (comp `  C ) X ) K )  =  K )
154152, 153eqtrd 2508 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) )  =  K )
155154fveq2d 5868 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) `  ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) ) )  =  ( ( a `  P ) `
 K ) )
156133, 150, 1553eqtr3d 2516 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( X ( 2nd `  F ) P ) `
 K )  o.  ( a `  X
) ) `  (  .1.  `  X ) )  =  ( ( a `
 P ) `  K ) )
157 fvco3 5942 . . . . . . . . . 10  |-  ( ( ( a `  X
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) --> ( ( 1st `  F
) `  X )  /\  (  .1.  `  X
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) )  ->  ( ( ( ( X ( 2nd `  F ) P ) `
 K )  o.  ( a `  X
) ) `  (  .1.  `  X ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) )
158142, 131, 157syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( X ( 2nd `  F ) P ) `
 K )  o.  ( a `  X
) ) `  (  .1.  `  X ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) )
159118, 156, 1583eqtr2d 2514 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) )
160159fveq2d 5868 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A `
 P ) `  ( ( a `  P ) `  (
( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) )  =  ( ( A `  P ) `
 ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) )
161109, 160eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A `  P )  o.  ( a `  P ) ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) )  =  ( ( A `
 P ) `  ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) )
16299, 106, 1613eqtrd 2512 . . . . 5  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
)  =  ( ( A `  P ) `
 ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) )
163162mpteq2dva 4533 . . . 4  |-  ( ph  ->  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A `  P ) `
 ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) ) )
1645, 163syl5eq 2520 . . 3  |-  ( ph  ->  ( b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A `  P ) `
 ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) ) )
165 eqid 2467 . . . . . . . . . . 11  |-  ( Q  X.c  O )  =  ( Q  X.c  O )
166165, 43, 10xpcbas 15301 . . . . . . . . . 10  |-  ( ( O  Func  S )  X.  B )  =  (
Base `  ( Q  X.c  O ) )
167 eqid 2467 . . . . . . . . . 10  |-  ( Hom  `  ( Q  X.c  O ) )  =  ( Hom  `  ( Q  X.c  O ) )
168 eqid 2467 . . . . . . . . . 10  |-  ( Hom  `  T )  =  ( Hom  `  T )
169 relfunc 15085 . . . . . . . . . . 11  |-  Rel  (
( Q  X.c  O ) 
Func  T )
170 yoneda.t . . . . . . . . . . . . 13  |-  T  =  ( SetCat `  V )
171 yoneda.h . . . . . . . . . . . . 13  |-  H  =  (HomF
`  Q )
172 yoneda.r . . . . . . . . . . . . 13  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
173 yoneda.e . . . . . . . . . . . . 13  |-  E  =  ( O evalF  S )
174 yoneda.z . . . . . . . . . . . . 13  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
17516, 9, 100, 8, 18, 170, 6, 171, 172, 173, 174, 17, 19, 23, 20yonedalem1 15395 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  e.  ( ( Q  X.c  O ) 
Func  T )  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
) )
176175simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( ( Q  X.c  O )  Func  T
) )
177 1st2ndbr 6830 . . . . . . . . . . 11  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  Z  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  Z ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
178169, 176, 177sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  Z
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
179 opelxpi 5030 . . . . . . . . . . 11  |-  ( ( F  e.  ( O 
Func  S )  /\  X  e.  B )  ->  <. F ,  X >.  e.  ( ( O  Func  S )  X.  B ) )
18055, 28, 179syl2anc 661 . . . . . . . . . 10  |-  ( ph  -> 
<. F ,  X >.  e.  ( ( O  Func  S )  X.  B ) )
181 opelxpi 5030 . . . . . . . . . . 11  |-  ( ( G  e.  ( O 
Func  S )  /\  P  e.  B )  ->  <. G ,  P >.  e.  ( ( O  Func  S )  X.  B ) )
18263, 27, 181syl2anc 661 . . . . . . . . . 10  |-  ( ph  -> 
<. G ,  P >.  e.  ( ( O  Func  S )  X.  B ) )
183166, 167, 168, 178, 180, 182funcf2 15091 . . . . . . . . 9  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) : ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. ) --> ( ( ( 1st `  Z ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  Z
) `  <. G ,  P >. ) ) )
184165, 43, 10, 14, 119, 55, 28, 63, 27, 167xpchom2 15309 . . . . . . . . . . 11  |-  ( ph  ->  ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. )  =  ( ( F ( O Nat  S ) G )  X.  ( X ( Hom  `  O
) P ) ) )
185121xpeq2i 5020 . . . . . . . . . . 11  |-  ( ( F ( O Nat  S
) G )  X.  ( X ( Hom  `  O ) P ) )  =  ( ( F ( O Nat  S
) G )  X.  ( P ( Hom  `  C ) X ) )
186184, 185syl6eq 2524 . . . . . . . . . 10  |-  ( ph  ->  ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. )  =  ( ( F ( O Nat  S ) G )  X.  ( P ( Hom  `  C
) X ) ) )
187 df-ov 6285 . . . . . . . . . . . . 13  |-  ( F ( 1st `  Z
) X )  =  ( ( 1st `  Z
) `  <. F ,  X >. )
188 df-ov 6285 . . . . . . . . . . . . 13  |-  ( G ( 1st `  Z
) P )  =  ( ( 1st `  Z
) `  <. G ,  P >. )
189187, 188oveq12i 6294 . . . . . . . . . . . 12  |-  ( ( F ( 1st `  Z
) X ) ( Hom  `  T )
( G ( 1st `  Z ) P ) )  =  ( ( ( 1st `  Z
) `  <. F ,  X >. ) ( Hom  `  T ) ( ( 1st `  Z ) `
 <. G ,  P >. ) )
190189eqcomi 2480 . . . . . . . . . . 11  |-  ( ( ( 1st `  Z
) `  <. F ,  X >. ) ( Hom  `  T ) ( ( 1st `  Z ) `
 <. G ,  P >. ) )  =  ( ( F ( 1st `  Z ) X ) ( Hom  `  T
) ( G ( 1st `  Z ) P ) )
191190a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 1st `  Z ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  Z
) `  <. G ,  P >. ) )  =  ( ( F ( 1st `  Z ) X ) ( Hom  `  T ) ( G ( 1st `  Z
) P ) ) )
192186, 191feq23d 5724 . . . . . . . . 9  |-  ( ph  ->  ( ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) : ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. ) --> ( ( ( 1st `  Z ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  Z
) `  <. G ,  P >. ) )  <->  ( <. F ,  X >. ( 2nd `  Z ) <. G ,  P >. ) : ( ( F ( O Nat  S ) G )  X.  ( P ( Hom  `  C
) X ) ) --> ( ( F ( 1st `  Z ) X ) ( Hom  `  T ) ( G ( 1st `  Z
) P ) ) ) )
193183, 192mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) : ( ( F ( O Nat  S
) G )  X.  ( P ( Hom  `  C ) X ) ) --> ( ( F ( 1st `  Z
) X ) ( Hom  `  T )
( G ( 1st `  Z ) P ) ) )
194193, 34, 30fovrnd 6429 . . . . . . 7  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K )  e.  ( ( F ( 1st `  Z ) X ) ( Hom  `  T
) ( G ( 1st `  Z ) P ) ) )
195 eqid 2467 . . . . . . . . . . 11  |-  ( Base `  T )  =  (
Base `  T )
196166, 195, 178funcf1 15089 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  Z
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
197196, 55, 28fovrnd 6429 . . . . . . . . 9  |-  ( ph  ->  ( F ( 1st `  Z ) X )  e.  ( Base `  T
) )
198170, 19setcbas 15259 . . . . . . . . 9  |-  ( ph  ->  V  =  ( Base `  T ) )
199197, 198eleqtrrd 2558 . . . . . . . 8  |-  ( ph  ->  ( F ( 1st `  Z ) X )  e.  V )
200196, 63, 27fovrnd 6429 . . . . . . . . 9  |-  ( ph  ->  ( G ( 1st `  Z ) P )  e.  ( Base `  T
) )
201200, 198eleqtrrd 2558 . . . . . . . 8  |-  ( ph  ->  ( G ( 1st `  Z ) P )  e.  V )
202170, 19, 168, 199, 201elsetchom 15262 . . . . . . 7  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K )  e.  ( ( F ( 1st `  Z ) X ) ( Hom  `  T
) ( G ( 1st `  Z ) P ) )  <->  ( A
( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) K ) : ( F ( 1st `  Z ) X ) --> ( G ( 1st `  Z ) P ) ) )
203194, 202mpbid 210 . . . . . 6  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) : ( F ( 1st `  Z
) X ) --> ( G ( 1st `  Z
) P ) )
20416, 9, 100, 8, 18, 170, 6, 171, 172, 173, 174, 17, 19, 23, 20, 55, 28, 63, 27, 34, 30yonedalem22 15401 . . . . . . . 8  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K )  =  ( ( ( P ( 2nd `  Y ) X ) `  K
) ( <. (
( 1st `  Y
) `  X ) ,  F >. ( 2nd `  H
) <. ( ( 1st `  Y ) `  P
) ,  G >. ) A ) )
2058oppccat 14974 . . . . . . . . . . 11  |-  ( C  e.  Cat  ->  O  e.  Cat )
20617, 205syl 16 . . . . . . . . . 10  |-  ( ph  ->  O  e.  Cat )
20718setccat 15266 . . . . . . . . . . 11  |-  ( U  e.  _V  ->  S  e.  Cat )
20822, 207syl 16 . . . . . . . . . 10  |-  ( ph  ->  S  e.  Cat )
2096, 206, 208fuccat 15193 . . . . . . . . 9  |-  ( ph  ->  Q  e.  Cat )
210171, 209, 43, 14, 45, 55, 83, 63, 12, 31, 34hof2val 15379 . . . . . . . 8  |-  ( ph  ->  ( ( ( P ( 2nd `  Y
) X ) `  K ) ( <.
( ( 1st `  Y
) `  X ) ,  F >. ( 2nd `  H
) <. ( ( 1st `  Y ) `  P
) ,  G >. ) A )  =  ( b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) )
211204, 210eqtrd 2508 . . . . . . 7  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K )  =  ( b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) )
21216, 9, 100, 8, 18, 170, 6, 171, 172, 173, 174, 17, 19, 23, 20, 55, 28yonedalem21 15396 . . . . . . 7  |-  ( ph  ->  ( F ( 1st `  Z ) X )  =  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) )
21316, 9, 100, 8, 18, 170, 6, 171, 172, 173, 174, 17, 19, 23, 20, 63, 27yonedalem21 15396 . . . . . . 7  |-  ( ph  ->  ( G ( 1st `  Z ) P )  =  ( ( ( 1st `  Y ) `
 P ) ( O Nat  S ) G ) )
214211, 212, 213feq123d 5719 . . . . . 6  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) : ( F ( 1st `  Z
) X ) --> ( G ( 1st `  Z
) P )  <->  ( b  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) : ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) --> ( ( ( 1st `  Y
) `  P )
( O Nat  S ) G ) ) )
215203, 214mpbid 210 . . . . 5  |-  ( ph  ->  ( b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) : ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) --> ( ( ( 1st `  Y
) `  P )
( O Nat  S ) G ) )
216 eqid 2467 . . . . . 6  |-  ( b  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) )  =  ( b  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) )
217216fmpt 6040 . . . . 5  |-  ( A. b  e.  ( (
( 1st `  Y
) `  X )
( O Nat  S ) F ) ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  e.  ( ( ( 1st `  Y ) `
 P ) ( O Nat  S ) G )  <->  ( b  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) : ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) --> ( ( ( 1st `  Y
) `  P )
( O Nat  S ) G ) )
218215, 217sylibr 212 . . . 4  |-  ( ph  ->  A. b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  e.  ( ( ( 1st `  Y ) `
 P ) ( O Nat  S ) G ) )
219 yonedalem3.m . . . . . 6  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
22016, 9, 100, 8, 18, 170, 6, 171, 172, 173, 174, 17, 19, 23, 20, 63, 27, 219yonedalem3a 15397 . . . . 5  |-  ( ph  ->  ( ( G M P )  =  ( a  e.  ( ( ( 1st `  Y
) `  P )
( O Nat  S ) G )  |->  ( ( a `  P ) `
 (  .1.  `  P ) ) )  /\  ( G M P ) : ( G ( 1st `  Z
) P ) --> ( G ( 1st `  E
) P ) ) )
221220simpld 459 . . . 4  |-  ( ph  ->  ( G M P )  =  ( a  e.  ( ( ( 1st `  Y ) `
 P ) ( O Nat  S ) G )  |->  ( ( a `
 P ) `  (  .1.  `  P )
) ) )
222 fveq1 5863 . . . . 5  |-  ( a  =  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  ->  ( a `  P )  =  ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) )
223222fveq1d 5866 . . . 4  |-  ( a  =  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  ->  ( ( a `
 P ) `  (  .1.  `  P )
)  =  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )
224218, 211, 221, 223fmptcof 6053 . . 3  |-  ( ph  ->  ( ( G M P )  o.  ( A ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) K ) )  =  ( b  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) ) )
225 eqid 2467 . . . . . . 7  |-  ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. )  =  ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. )
226173, 206, 208, 10, 119, 11, 7, 55, 63, 28, 27, 225, 34, 122evlf2val 15342 . . . . . 6  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  =  ( ( A `  P
) ( <. (
( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  P
) >. (comp `  S
) ( ( 1st `  G ) `  P
) ) ( ( X ( 2nd `  F
) P ) `  K ) ) )
22718, 22, 11, 138, 61, 68, 146, 78setcco 15264 . . . . . 6  |-  ( ph  ->  ( ( A `  P ) ( <.
( ( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  P
) >. (comp `  S
) ( ( 1st `  G ) `  P
) ) ( ( X ( 2nd `  F
) P ) `  K ) )  =  ( ( A `  P )  o.  (
( X ( 2nd `  F ) P ) `
 K ) ) )
228226, 227eqtrd 2508 . . . . 5  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  =  ( ( A `  P
)  o.  ( ( X ( 2nd `  F
) P ) `  K ) ) )
229228coeq1d 5162 . . . 4  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  o.  ( F M X ) )  =  ( ( ( A `  P )  o.  ( ( X ( 2nd `  F
) P ) `  K ) )  o.  ( F M X ) ) )
23016, 9, 100, 8, 18, 170, 6, 171, 172, 173, 174, 17, 19, 23, 20, 55, 28, 219yonedalem3a 15397 . . . . . . . 8  |-  ( ph  ->  ( ( F M X )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) )  /\  ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X ) ) )
231230simprd 463 . . . . . . 7  |-  ( ph  ->  ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X ) )
232230simpld 459 . . . . . . . 8  |-  ( ph  ->  ( F M X )  =  ( a  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( a `
 X ) `  (  .1.  `  X )
) ) )
233173, 206, 208, 10, 55, 28evlf1 15343 . . . . . . . 8  |-  ( ph  ->  ( F ( 1st `  E ) X )  =  ( ( 1st `  F ) `  X
) )
234232, 212, 233feq123d 5719 . . . . . . 7  |-  ( ph  ->  ( ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X )  <->  ( a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( a `  X
) `  (  .1.  `  X ) ) ) : ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) --> ( ( 1st `  F ) `  X
) ) )
235231, 234mpbid 210 . . . . . 6  |-  ( ph  ->  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) ) : ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) --> ( ( 1st `  F ) `  X
) )
236 eqid 2467 . . . . . . 7  |-  ( a  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( a `
 X ) `  (  .1.  `  X )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) )
237236fmpt 6040 . . . . . 6  |-  ( A. a  e.  ( (
( 1st `  Y
) `  X )
( O Nat  S ) F ) ( ( a `  X ) `
 (  .1.  `  X ) )  e.  ( ( 1st `  F
) `  X )  <->  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) ) : ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) --> ( ( 1st `  F ) `  X
) )
238235, 237sylibr 212 . . . . 5  |-  ( ph  ->  A. a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) ( ( a `  X ) `
 (  .1.  `  X ) )  e.  ( ( 1st `  F
) `  X )
)
239 fcompt 6055 . . . . . 6  |-  ( ( ( A `  P
) : ( ( 1st `  F ) `
 P ) --> ( ( 1st `  G
) `  P )  /\  ( ( X ( 2nd `  F ) P ) `  K
) : ( ( 1st `  F ) `
 X ) --> ( ( 1st `  F
) `  P )
)  ->  ( ( A `  P )  o.  ( ( X ( 2nd `  F ) P ) `  K
) )  =  ( y  e.  ( ( 1st `  F ) `
 X )  |->  ( ( A `  P
) `  ( (
( X ( 2nd `  F ) P ) `
 K ) `  y ) ) ) )
24078, 146, 239syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( A `  P )  o.  (
( X ( 2nd `  F ) P ) `
 K ) )  =  ( y  e.  ( ( 1st `  F
) `  X )  |->  ( ( A `  P ) `  (
( ( X ( 2nd `  F ) P ) `  K
) `  y )
) ) )
241 fveq2 5864 . . . . . 6  |-  ( y  =  ( ( a `
 X ) `  (  .1.  `  X )
)  ->  ( (
( X ( 2nd `  F ) P ) `
 K ) `  y )  =  ( ( ( X ( 2nd `  F ) P ) `  K
) `  ( (
a `  X ) `  (  .1.  `  X
) ) ) )
242241fveq2d 5868 . . . . 5  |-  ( y  =  ( ( a `
 X ) `  (  .1.  `  X )
)  ->  ( ( A `  P ) `  ( ( ( X ( 2nd `  F
) P ) `  K ) `  y
) )  =  ( ( A `  P
) `  ( (
( X ( 2nd `  F ) P ) `
 K ) `  ( ( a `  X ) `  (  .1.  `  X ) ) ) ) )
243238, 232, 240, 242fmptcof 6053 . . . 4  |-  ( ph  ->  ( ( ( A `
 P )  o.  ( ( X ( 2nd `  F ) P ) `  K
) )  o.  ( F M X ) )  =  ( a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( A `  P
) `  ( (
( X ( 2nd `  F ) P ) `
 K ) `  ( ( a `  X ) `  (  .1.  `  X ) ) ) ) ) )
244229, 243eqtrd 2508 . . 3  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  o.  ( F M X ) )  =  ( a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( A `  P
) `  ( (
( X ( 2nd `  F ) P ) `
 K ) `  ( ( a `  X ) `  (  .1.  `  X ) ) ) ) ) )
245164, 224, 2443eqtr4d 2518 . 2  |-  ( ph  ->  ( ( G M P )  o.  ( A ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) K ) )  =  ( ( A ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) K )  o.  ( F M X ) ) )
246 eqid 2467 . . 3  |-  (comp `  T )  =  (comp `  T )
247175simprd 463 . . . . . . 7  |-  ( ph  ->  E  e.  ( ( Q  X.c  O )  Func  T
) )
248 1st2ndbr 6830 . . . . . . 7  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  E ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
249169, 247, 248sylancr 663 . . . . . 6  |-  ( ph  ->  ( 1st `  E
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
250166, 195, 249funcf1 15089 . . . . 5  |-  ( ph  ->  ( 1st `  E
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
251250, 63, 27fovrnd 6429 . . . 4  |-  ( ph  ->  ( G ( 1st `  E ) P )  e.  ( Base `  T
) )
252251, 198eleqtrrd 2558 . . 3  |-  ( ph  ->  ( G ( 1st `  E ) P )  e.  V )
253220simprd 463 . . 3  |-  ( ph  ->  ( G M P ) : ( G ( 1st `  Z
) P ) --> ( G ( 1st `  E
) P ) )
254170, 19, 246, 199, 201, 252, 203, 253setcco 15264 . 2  |-  ( ph  ->  ( ( G M P ) ( <.
( F ( 1st `  Z ) X ) ,  ( G ( 1st `  Z ) P ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) )  =  ( ( G M P )  o.  ( A ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) K ) ) )
255250, 55, 28fovrnd 6429 . . . 4  |-  ( ph  ->  ( F ( 1st `  E ) X )  e.  ( Base `  T
) )
256255, 198eleqtrrd 2558 . . 3  |-  ( ph  ->  ( F ( 1st `  E ) X )  e.  V )
257166, 167, 168, 249, 180, 182funcf2 15091 . . . . . 6  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) : ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. ) --> ( ( ( 1st `  E ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  E
) `  <. G ,  P >. ) ) )
258 df-ov 6285 . . . . . . . . . 10  |-  ( F ( 1st `  E
) X )  =  ( ( 1st `  E
) `  <. F ,  X >. )
259 df-ov 6285 . . . . . . . . . 10  |-  ( G ( 1st `  E
) P )  =  ( ( 1st `  E
) `  <. G ,  P >. )
260258, 259oveq12i 6294 . . . . . . . . 9  |-  ( ( F ( 1st `  E
) X ) ( Hom  `  T )
( G ( 1st `  E ) P ) )  =  ( ( ( 1st `  E
) `  <. F ,  X >. ) ( Hom  `  T ) ( ( 1st `  E ) `
 <. G ,  P >. ) )
261260eqcomi 2480 . . . . . . . 8  |-  ( ( ( 1st `  E
) `  <. F ,  X >. ) ( Hom  `  T ) ( ( 1st `  E ) `
 <. G ,  P >. ) )  =  ( ( F ( 1st `  E ) X ) ( Hom  `  T
) ( G ( 1st `  E ) P ) )
262261a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( ( 1st `  E ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  E
) `  <. G ,  P >. ) )  =  ( ( F ( 1st `  E ) X ) ( Hom  `  T ) ( G ( 1st `  E
) P ) ) )
263186, 262feq23d 5724 . . . . . 6  |-  ( ph  ->  ( ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) : ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. ) --> ( ( ( 1st `  E ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  E
) `  <. G ,  P >. ) )  <->  ( <. F ,  X >. ( 2nd `  E ) <. G ,  P >. ) : ( ( F ( O Nat  S ) G )  X.  ( P ( Hom  `  C
) X ) ) --> ( ( F ( 1st `  E ) X ) ( Hom  `  T ) ( G ( 1st `  E
) P ) ) ) )
264257, 263mpbid 210 . . . . 5  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) : ( ( F ( O Nat  S
) G )  X.  ( P ( Hom  `  C ) X ) ) --> ( ( F ( 1st `  E
) X ) ( Hom  `  T )
( G ( 1st `  E ) P ) ) )
265264, 34, 30fovrnd 6429 . . . 4  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  e.  ( ( F ( 1st `  E ) X ) ( Hom  `  T
) ( G ( 1st `  E ) P ) ) )
266170, 19, 168, 256, 252elsetchom 15262 . . . 4  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  e.  ( ( F ( 1st `  E ) X ) ( Hom  `  T
) ( G ( 1st `  E ) P ) )  <->  ( A
( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) K ) : ( F ( 1st `  E ) X ) --> ( G ( 1st `  E ) P ) ) )
267265, 266mpbid 210 . . 3  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K ) : ( F ( 1st `  E
) X ) --> ( G ( 1st `  E
) P ) )
268170, 19, 246, 199, 256, 252, 231, 267setcco 15264 . 2  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K ) ( <.
( F ( 1st `  Z ) X ) ,  ( F ( 1st `  E ) X ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( F M X ) )  =  ( ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  o.  ( F M X ) ) )
269245, 254, 2683eqtr4d 2518 1  |-  ( ph  ->  ( ( G M P ) ( <.
( F ( 1st `  Z ) X ) ,  ( G ( 1st `  Z ) P ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) )  =  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K ) ( <.
( F ( 1st `  Z ) X ) ,  ( F ( 1st `  E ) X ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( F M X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    u. cun 3474    C_ wss 3476   <.cop 4033   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   ran crn 5000    o. ccom 5003   Rel wrel 5004   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   1stc1st 6779   2ndc2nd 6780  tpos ctpos 6951   Basecbs 14486   Hom chom 14562  compcco 14563   Catccat 14915   Idccid 14916   Hom f chomf 14917  oppCatcoppc 14963    Func cfunc 15077    o.func ccofu 15079   Nat cnat 15164   FuncCat cfuc 15165   SetCatcsetc 15256    X.c cxpc 15291    1stF c1stf 15292    2ndF c2ndf 15293   ⟨,⟩F cprf 15294   evalF cevlf 15332  HomFchof 15371  Yoncyon 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-hom 14575  df-cco 14576  df-cat 14919  df-cid 14920  df-homf 14921  df-comf 14922  df-oppc 14964  df-ssc 15036  df-resc 15037  df-subc 15038  df-func 15081  df-cofu 15083  df-nat 15166  df-fuc 15167  df-setc 15257  df-xpc 15295  df-1stf 15296  df-2ndf 15297  df-prf 15298  df-evlf 15336  df-curf 15337  df-hof 15373  df-yon 15374
This theorem is referenced by:  yonedalem3  15403
  Copyright terms: Public domain W3C validator