MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3a Structured version   Unicode version

Theorem yonedalem3a 15390
Description: Lemma for yoneda 15399. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yonedalem21.f  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
yonedalem21.x  |-  ( ph  ->  X  e.  B )
yonedalem3a.m  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
Assertion
Ref Expression
yonedalem3a  |-  ( ph  ->  ( ( F M X )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) )  /\  ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X ) ) )
Distinct variable groups:    f, a, x,  .1.    C, a, f, x    E, a, f    F, a, f, x    B, a, f, x    O, a, f, x    S, a, f, x    Q, a, f, x    T, f    ph, a, f, x    Y, a, f, x    Z, a, f, x    X, a, f, x
Allowed substitution hints:    R( x, f, a)    T( x, a)    U( x, f, a)    E( x)    H( x, f, a)    M( x, f, a)    V( x, f, a)    W( x, f, a)

Proof of Theorem yonedalem3a
StepHypRef Expression
1 yonedalem21.f . . 3  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
2 yonedalem21.x . . 3  |-  ( ph  ->  X  e.  B )
3 simpr 461 . . . . . . 7  |-  ( ( f  =  F  /\  x  =  X )  ->  x  =  X )
43fveq2d 5861 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  X
) )
5 simpl 457 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  f  =  F )
64, 5oveq12d 6293 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ( ( 1st `  Y ) `  x
) ( O Nat  S
) f )  =  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )
73fveq2d 5861 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  ( a `  x
)  =  ( a `
 X ) )
83fveq2d 5861 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  (  .1.  `  x
)  =  (  .1.  `  X ) )
97, 8fveq12d 5863 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ( a `  x ) `  (  .1.  `  x ) )  =  ( ( a `
 X ) `  (  .1.  `  X )
) )
106, 9mpteq12dv 4518 . . . 4  |-  ( ( f  =  F  /\  x  =  X )  ->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) )  =  ( a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( a `  X
) `  (  .1.  `  X ) ) ) )
11 yonedalem3a.m . . . 4  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
12 ovex 6300 . . . . 5  |-  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  e.  _V
1312mptex 6122 . . . 4  |-  ( a  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( a `
 X ) `  (  .1.  `  X )
) )  e.  _V
1410, 11, 13ovmpt2a 6408 . . 3  |-  ( ( F  e.  ( O 
Func  S )  /\  X  e.  B )  ->  ( F M X )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) ) )
151, 2, 14syl2anc 661 . 2  |-  ( ph  ->  ( F M X )  =  ( a  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( a `
 X ) `  (  .1.  `  X )
) ) )
16 eqid 2460 . . . . . . 7  |-  ( O Nat 
S )  =  ( O Nat  S )
17 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) )
1816, 17nat1st2nd 15167 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  a  e.  (
<. ( 1st `  (
( 1st `  Y
) `  X )
) ,  ( 2nd `  ( ( 1st `  Y
) `  X )
) >. ( O Nat  S
) <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
)
19 yoneda.o . . . . . . . 8  |-  O  =  (oppCat `  C )
20 yoneda.b . . . . . . . 8  |-  B  =  ( Base `  C
)
2119, 20oppcbas 14963 . . . . . . 7  |-  B  =  ( Base `  O
)
22 eqid 2460 . . . . . . 7  |-  ( Hom  `  S )  =  ( Hom  `  S )
232adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  X  e.  B
)
2416, 18, 21, 22, 23natcl 15169 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  X )  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  X )
) )
25 yoneda.s . . . . . . 7  |-  S  =  ( SetCat `  U )
26 yoneda.w . . . . . . . . 9  |-  ( ph  ->  V  e.  W )
27 yoneda.v . . . . . . . . . 10  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
2827unssbd 3675 . . . . . . . . 9  |-  ( ph  ->  U  C_  V )
2926, 28ssexd 4587 . . . . . . . 8  |-  ( ph  ->  U  e.  _V )
3029adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  U  e.  _V )
31 eqid 2460 . . . . . . . . . . 11  |-  ( Base `  S )  =  (
Base `  S )
32 relfunc 15078 . . . . . . . . . . . 12  |-  Rel  ( O  Func  S )
33 yoneda.y . . . . . . . . . . . . 13  |-  Y  =  (Yon `  C )
34 yoneda.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  Cat )
35 yoneda.u . . . . . . . . . . . . 13  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
3633, 20, 34, 2, 19, 25, 29, 35yon1cl 15379 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1st `  Y
) `  X )  e.  ( O  Func  S
) )
37 1st2ndbr 6823 . . . . . . . . . . . 12  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 X )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  X
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  X )
) )
3832, 36, 37sylancr 663 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  X )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  X )
) )
3921, 31, 38funcf1 15082 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  X )
) : B --> ( Base `  S ) )
4039, 2ffvelrnd 6013 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )  e.  ( Base `  S
) )
4125, 29setcbas 15252 . . . . . . . . 9  |-  ( ph  ->  U  =  ( Base `  S ) )
4240, 41eleqtrrd 2551 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )  e.  U )
4342adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  X )  e.  U )
44 1st2ndbr 6823 . . . . . . . . . . . 12  |-  ( ( Rel  ( O  Func  S )  /\  F  e.  ( O  Func  S
) )  ->  ( 1st `  F ) ( O  Func  S )
( 2nd `  F
) )
4532, 1, 44sylancr 663 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  F
) ( O  Func  S ) ( 2nd `  F
) )
4621, 31, 45funcf1 15082 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  F
) : B --> ( Base `  S ) )
4746, 2ffvelrnd 6013 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  F
) `  X )  e.  ( Base `  S
) )
4847, 41eleqtrrd 2551 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  F
) `  X )  e.  U )
4948adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  F ) `  X
)  e.  U )
5025, 30, 22, 43, 49elsetchom 15255 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 X )  e.  ( ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  X )
)  <->  ( a `  X ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  F
) `  X )
) )
5124, 50mpbid 210 . . . . 5  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  X ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  F
) `  X )
)
52 eqid 2460 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
53 yoneda.1 . . . . . . . 8  |-  .1.  =  ( Id `  C )
5420, 52, 53, 34, 2catidcl 14926 . . . . . . 7  |-  ( ph  ->  (  .1.  `  X
)  e.  ( X ( Hom  `  C
) X ) )
5533, 20, 34, 2, 52, 2yon11 15380 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )  =  ( X ( Hom  `  C ) X ) )
5654, 55eleqtrrd 2551 . . . . . 6  |-  ( ph  ->  (  .1.  `  X
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) )
5756adantr 465 . . . . 5  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  X )  e.  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
)
5851, 57ffvelrnd 6013 . . . 4  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 X ) `  (  .1.  `  X )
)  e.  ( ( 1st `  F ) `
 X ) )
59 eqid 2460 . . . 4  |-  ( a  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( a `
 X ) `  (  .1.  `  X )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) )
6058, 59fmptd 6036 . . 3  |-  ( ph  ->  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) ) : ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) --> ( ( 1st `  F ) `  X
) )
61 yoneda.t . . . . 5  |-  T  =  ( SetCat `  V )
62 yoneda.q . . . . 5  |-  Q  =  ( O FuncCat  S )
63 yoneda.h . . . . 5  |-  H  =  (HomF
`  Q )
64 yoneda.r . . . . 5  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
65 yoneda.e . . . . 5  |-  E  =  ( O evalF  S )
66 yoneda.z . . . . 5  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
6733, 20, 53, 19, 25, 61, 62, 63, 64, 65, 66, 34, 26, 35, 27, 1, 2yonedalem21 15389 . . . 4  |-  ( ph  ->  ( F ( 1st `  Z ) X )  =  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) )
6819oppccat 14967 . . . . . 6  |-  ( C  e.  Cat  ->  O  e.  Cat )
6934, 68syl 16 . . . . 5  |-  ( ph  ->  O  e.  Cat )
7025setccat 15259 . . . . . 6  |-  ( U  e.  _V  ->  S  e.  Cat )
7129, 70syl 16 . . . . 5  |-  ( ph  ->  S  e.  Cat )
7265, 69, 71, 21, 1, 2evlf1 15336 . . . 4  |-  ( ph  ->  ( F ( 1st `  E ) X )  =  ( ( 1st `  F ) `  X
) )
7315, 67, 72feq123d 5712 . . 3  |-  ( ph  ->  ( ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X )  <->  ( a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( a `  X
) `  (  .1.  `  X ) ) ) : ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) --> ( ( 1st `  F ) `  X
) ) )
7460, 73mpbird 232 . 2  |-  ( ph  ->  ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X ) )
7515, 74jca 532 1  |-  ( ph  ->  ( ( F M X )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) )  /\  ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   _Vcvv 3106    u. cun 3467    C_ wss 3469   <.cop 4026   class class class wbr 4440    |-> cmpt 4498   ran crn 4993   Rel wrel 4997   -->wf 5575   ` cfv 5579  (class class class)co 6275    |-> cmpt2 6277   1stc1st 6772   2ndc2nd 6773  tpos ctpos 6944   Basecbs 14479   Hom chom 14555   Catccat 14908   Idccid 14909   Hom f chomf 14910  oppCatcoppc 14956    Func cfunc 15070    o.func ccofu 15072   Nat cnat 15157   FuncCat cfuc 15158   SetCatcsetc 15249    X.c cxpc 15284    1stF c1stf 15285    2ndF c2ndf 15286   ⟨,⟩F cprf 15287   evalF cevlf 15325  HomFchof 15364  Yoncyon 15365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-tpos 6945  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-fz 11662  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-hom 14568  df-cco 14569  df-cat 14912  df-cid 14913  df-homf 14914  df-comf 14915  df-oppc 14957  df-func 15074  df-cofu 15076  df-nat 15159  df-fuc 15160  df-setc 15250  df-xpc 15288  df-1stf 15289  df-2ndf 15290  df-prf 15291  df-evlf 15329  df-curf 15330  df-hof 15366  df-yon 15367
This theorem is referenced by:  yonedalem3b  15395  yonedalem3  15396  yonedainv  15397
  Copyright terms: Public domain W3C validator