MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3 Structured version   Unicode version

Theorem yonedalem3 15748
Description: Lemma for yoneda 15751. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yoneda.m  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
Assertion
Ref Expression
yonedalem3  |-  ( ph  ->  M  e.  ( Z ( ( Q  X.c  O
) Nat  T ) E ) )
Distinct variable groups:    f, a, x,  .1.    C, a, f, x    E, a, f    B, a, f, x    O, a, f, x    S, a, f, x    Q, a, f, x    T, f    ph, a, f, x    Y, a, f, x    Z, a, f, x
Allowed substitution hints:    R( x, f, a)    T( x, a)    U( x, f, a)    E( x)    H( x, f, a)    M( x, f, a)    V( x, f, a)    W( x, f, a)

Proof of Theorem yonedalem3
Dummy variables  g 
y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.m . . . . 5  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
2 ovex 6298 . . . . . 6  |-  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  e.  _V
32mptex 6118 . . . . 5  |-  ( a  e.  ( ( ( 1st `  Y ) `
 x ) ( O Nat  S ) f )  |->  ( ( a `
 x ) `  (  .1.  `  x )
) )  e.  _V
41, 3fnmpt2i 6842 . . . 4  |-  M  Fn  ( ( O  Func  S )  X.  B )
54a1i 11 . . 3  |-  ( ph  ->  M  Fn  ( ( O  Func  S )  X.  B ) )
6 yoneda.y . . . . . . . 8  |-  Y  =  (Yon `  C )
7 yoneda.b . . . . . . . 8  |-  B  =  ( Base `  C
)
8 yoneda.1 . . . . . . . 8  |-  .1.  =  ( Id `  C )
9 yoneda.o . . . . . . . 8  |-  O  =  (oppCat `  C )
10 yoneda.s . . . . . . . 8  |-  S  =  ( SetCat `  U )
11 yoneda.t . . . . . . . 8  |-  T  =  ( SetCat `  V )
12 yoneda.q . . . . . . . 8  |-  Q  =  ( O FuncCat  S )
13 yoneda.h . . . . . . . 8  |-  H  =  (HomF
`  Q )
14 yoneda.r . . . . . . . 8  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
15 yoneda.e . . . . . . . 8  |-  E  =  ( O evalF  S )
16 yoneda.z . . . . . . . 8  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
17 yoneda.c . . . . . . . . 9  |-  ( ph  ->  C  e.  Cat )
1817adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  C  e.  Cat )
19 yoneda.w . . . . . . . . 9  |-  ( ph  ->  V  e.  W )
2019adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  V  e.  W )
21 yoneda.u . . . . . . . . 9  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
2221adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  ran  ( Hom f  `  C )  C_  U )
23 yoneda.v . . . . . . . . 9  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
2423adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ran  ( Hom f  `  Q
)  u.  U ) 
C_  V )
25 simprl 754 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
g  e.  ( O 
Func  S ) )
26 simprr 755 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
y  e.  B )
276, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 1yonedalem3a 15742 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ( g M y )  =  ( a  e.  ( ( ( 1st `  Y
) `  y )
( O Nat  S ) g )  |->  ( ( a `  y ) `
 (  .1.  `  y ) ) )  /\  ( g M y ) : ( g ( 1st `  Z
) y ) --> ( g ( 1st `  E
) y ) ) )
2827simprd 461 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g M y ) : ( g ( 1st `  Z
) y ) --> ( g ( 1st `  E
) y ) )
29 eqid 2454 . . . . . . 7  |-  ( Hom  `  T )  =  ( Hom  `  T )
30 eqid 2454 . . . . . . . . . . 11  |-  ( Q  X.c  O )  =  ( Q  X.c  O )
3112fucbas 15448 . . . . . . . . . . 11  |-  ( O 
Func  S )  =  (
Base `  Q )
329, 7oppcbas 15206 . . . . . . . . . . 11  |-  B  =  ( Base `  O
)
3330, 31, 32xpcbas 15646 . . . . . . . . . 10  |-  ( ( O  Func  S )  X.  B )  =  (
Base `  ( Q  X.c  O ) )
34 eqid 2454 . . . . . . . . . 10  |-  ( Base `  T )  =  (
Base `  T )
35 relfunc 15350 . . . . . . . . . . 11  |-  Rel  (
( Q  X.c  O ) 
Func  T )
366, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23yonedalem1 15740 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  e.  ( ( Q  X.c  O ) 
Func  T )  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
) )
3736simpld 457 . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( ( Q  X.c  O )  Func  T
) )
38 1st2ndbr 6822 . . . . . . . . . . 11  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  Z  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  Z ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
3935, 37, 38sylancr 661 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  Z
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
4033, 34, 39funcf1 15354 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  Z
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
4140fovrnda 6419 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  Z ) y )  e.  ( Base `  T
) )
4211, 20setcbas 15556 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  V  =  ( Base `  T ) )
4341, 42eleqtrrd 2545 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  Z ) y )  e.  V )
4436simprd 461 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  ( ( Q  X.c  O )  Func  T
) )
45 1st2ndbr 6822 . . . . . . . . . . 11  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  E ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
4635, 44, 45sylancr 661 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  E
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
4733, 34, 46funcf1 15354 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  E
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
4847fovrnda 6419 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  E ) y )  e.  ( Base `  T
) )
4948, 42eleqtrrd 2545 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  E ) y )  e.  V )
5011, 20, 29, 43, 49elsetchom 15559 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T
) ( g ( 1st `  E ) y ) )  <->  ( g M y ) : ( g ( 1st `  Z ) y ) --> ( g ( 1st `  E ) y ) ) )
5128, 50mpbird 232 . . . . 5  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g M y )  e.  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
5251ralrimivva 2875 . . . 4  |-  ( ph  ->  A. g  e.  ( O  Func  S ) A. y  e.  B  ( g M y )  e.  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
53 fveq2 5848 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( M `  z )  =  ( M `  <. g ,  y >. )
)
54 df-ov 6273 . . . . . . 7  |-  ( g M y )  =  ( M `  <. g ,  y >. )
5553, 54syl6eqr 2513 . . . . . 6  |-  ( z  =  <. g ,  y
>.  ->  ( M `  z )  =  ( g M y ) )
56 fveq2 5848 . . . . . . . 8  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  Z ) `  z
)  =  ( ( 1st `  Z ) `
 <. g ,  y
>. ) )
57 df-ov 6273 . . . . . . . 8  |-  ( g ( 1st `  Z
) y )  =  ( ( 1st `  Z
) `  <. g ,  y >. )
5856, 57syl6eqr 2513 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  Z ) `  z
)  =  ( g ( 1st `  Z
) y ) )
59 fveq2 5848 . . . . . . . 8  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  E ) `  z
)  =  ( ( 1st `  E ) `
 <. g ,  y
>. ) )
60 df-ov 6273 . . . . . . . 8  |-  ( g ( 1st `  E
) y )  =  ( ( 1st `  E
) `  <. g ,  y >. )
6159, 60syl6eqr 2513 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  E ) `  z
)  =  ( g ( 1st `  E
) y ) )
6258, 61oveq12d 6288 . . . . . 6  |-  ( z  =  <. g ,  y
>.  ->  ( ( ( 1st `  Z ) `
 z ) ( Hom  `  T )
( ( 1st `  E
) `  z )
)  =  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
6355, 62eleq12d 2536 . . . . 5  |-  ( z  =  <. g ,  y
>.  ->  ( ( M `
 z )  e.  ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T ) ( g ( 1st `  E
) y ) ) ) )
6463ralxp 5133 . . . 4  |-  ( A. z  e.  ( ( O  Func  S )  X.  B ) ( M `
 z )  e.  ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  A. g  e.  ( O  Func  S
) A. y  e.  B  ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T
) ( g ( 1st `  E ) y ) ) )
6552, 64sylibr 212 . . 3  |-  ( ph  ->  A. z  e.  ( ( O  Func  S
)  X.  B ) ( M `  z
)  e.  ( ( ( 1st `  Z
) `  z )
( Hom  `  T ) ( ( 1st `  E
) `  z )
) )
66 ovex 6298 . . . . . 6  |-  ( O 
Func  S )  e.  _V
67 fvex 5858 . . . . . . 7  |-  ( Base `  C )  e.  _V
687, 67eqeltri 2538 . . . . . 6  |-  B  e. 
_V
6966, 68mpt2ex 6850 . . . . 5  |-  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y ) `  x
) ( O Nat  S
) f )  |->  ( ( a `  x
) `  (  .1.  `  x ) ) ) )  e.  _V
701, 69eqeltri 2538 . . . 4  |-  M  e. 
_V
7170elixp 7469 . . 3  |-  ( M  e.  X_ z  e.  ( ( O  Func  S
)  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  ( M  Fn  ( ( O  Func  S )  X.  B )  /\  A. z  e.  ( ( O  Func  S )  X.  B ) ( M `  z
)  e.  ( ( ( 1st `  Z
) `  z )
( Hom  `  T ) ( ( 1st `  E
) `  z )
) ) )
725, 65, 71sylanbrc 662 . 2  |-  ( ph  ->  M  e.  X_ z  e.  ( ( O  Func  S )  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) ) )
7317adantr 463 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  C  e.  Cat )
7419adantr 463 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  V  e.  W )
7521adantr 463 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  ran  ( Hom f  `  C )  C_  U )
7623adantr 463 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ran  ( Hom f  `  Q
)  u.  U ) 
C_  V )
77 simpr1 1000 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
z  e.  ( ( O  Func  S )  X.  B ) )
78 xp1st 6803 . . . . . 6  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 1st `  z )  e.  ( O  Func  S )
)
7977, 78syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  z
)  e.  ( O 
Func  S ) )
80 xp2nd 6804 . . . . . 6  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 2nd `  z )  e.  B
)
8177, 80syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  z
)  e.  B )
82 simpr2 1001 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  w  e.  ( ( O  Func  S )  X.  B ) )
83 xp1st 6803 . . . . . 6  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 1st `  w )  e.  ( O  Func  S )
)
8482, 83syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  w
)  e.  ( O 
Func  S ) )
85 xp2nd 6804 . . . . . 6  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 2nd `  w )  e.  B
)
8682, 85syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  w
)  e.  B )
87 simpr3 1002 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) )
88 eqid 2454 . . . . . . . . . 10  |-  ( O Nat 
S )  =  ( O Nat  S )
8912, 88fuchom 15449 . . . . . . . . 9  |-  ( O Nat 
S )  =  ( Hom  `  Q )
90 eqid 2454 . . . . . . . . 9  |-  ( Hom  `  O )  =  ( Hom  `  O )
91 eqid 2454 . . . . . . . . 9  |-  ( Hom  `  ( Q  X.c  O ) )  =  ( Hom  `  ( Q  X.c  O ) )
9230, 33, 89, 90, 91, 77, 82xpchom 15648 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( Hom  `  ( Q  X.c  O ) ) w )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  z
) ( Hom  `  O
) ( 2nd `  w
) ) ) )
93 eqid 2454 . . . . . . . . . 10  |-  ( Hom  `  C )  =  ( Hom  `  C )
9493, 9oppchom 15203 . . . . . . . . 9  |-  ( ( 2nd `  z ) ( Hom  `  O
) ( 2nd `  w
) )  =  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) )
9594xpeq2i 5009 . . . . . . . 8  |-  ( ( ( 1st `  z
) ( O Nat  S
) ( 1st `  w
) )  X.  (
( 2nd `  z
) ( Hom  `  O
) ( 2nd `  w
) ) )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )
9692, 95syl6eq 2511 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( Hom  `  ( Q  X.c  O ) ) w )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
9787, 96eleqtrd 2544 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  e.  ( ( ( 1st `  z
) ( O Nat  S
) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
98 xp1st 6803 . . . . . 6  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) ) )
9997, 98syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) ) )
100 xp2nd 6804 . . . . . 6  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  w ) ( Hom  `  C
) ( 2nd `  z
) ) )
10197, 100syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  w ) ( Hom  `  C
) ( 2nd `  z
) ) )
1026, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 73, 74, 75, 76, 79, 81, 84, 86, 99, 101, 1yonedalem3b 15747 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( ( 1st `  w ) M ( 2nd `  w ) ) ( <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  g
) ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )  =  ( ( ( 1st `  g ) ( <.
( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  z
) M ( 2nd `  z ) ) ) )
103 1st2nd2 6810 . . . . . . . . . 10  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
10477, 103syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
105104fveq2d 5852 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  z )  =  ( ( 1st `  Z ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
106 df-ov 6273 . . . . . . . 8  |-  ( ( 1st `  z ) ( 1st `  Z
) ( 2nd `  z
) )  =  ( ( 1st `  Z
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
107105, 106syl6eqr 2513 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  z )  =  ( ( 1st `  z ) ( 1st `  Z ) ( 2nd `  z ) ) )
108 1st2nd2 6810 . . . . . . . . . 10  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  w  =  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
10982, 108syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  w  =  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
110109fveq2d 5852 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  w )  =  ( ( 1st `  Z ) `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
111 df-ov 6273 . . . . . . . 8  |-  ( ( 1st `  w ) ( 1st `  Z
) ( 2nd `  w
) )  =  ( ( 1st `  Z
) `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
112110, 111syl6eqr 2513 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  w )  =  ( ( 1st `  w ) ( 1st `  Z ) ( 2nd `  w ) ) )
113107, 112opeq12d 4211 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  <. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >.  =  <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. )
114109fveq2d 5852 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  w )  =  ( ( 1st `  E ) `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
115 df-ov 6273 . . . . . . 7  |-  ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) )  =  ( ( 1st `  E
) `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
116114, 115syl6eqr 2513 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  w )  =  ( ( 1st `  w ) ( 1st `  E ) ( 2nd `  w ) ) )
117113, 116oveq12d 6288 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( <. ( ( 1st `  Z ) `  z
) ,  ( ( 1st `  Z ) `
 w ) >.
(comp `  T )
( ( 1st `  E
) `  w )
)  =  ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) )
118109fveq2d 5852 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  w
)  =  ( M `
 <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
119 df-ov 6273 . . . . . 6  |-  ( ( 1st `  w ) M ( 2nd `  w
) )  =  ( M `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
120118, 119syl6eqr 2513 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  w
)  =  ( ( 1st `  w ) M ( 2nd `  w
) ) )
121104, 109oveq12d 6288 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( 2nd `  Z ) w )  =  ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
122 1st2nd2 6810 . . . . . . . 8  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
12397, 122syl 16 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
124121, 123fveq12d 5854 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  Z ) w ) `  g
)  =  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
)
125 df-ov 6273 . . . . . 6  |-  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) )  =  ( ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
126124, 125syl6eqr 2513 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  Z ) w ) `  g
)  =  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )
127117, 120, 126oveq123d 6291 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( M `  w ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( 1st `  w ) M ( 2nd `  w ) ) ( <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  g
) ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ) )
128104fveq2d 5852 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  z )  =  ( ( 1st `  E ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
129 df-ov 6273 . . . . . . . 8  |-  ( ( 1st `  z ) ( 1st `  E
) ( 2nd `  z
) )  =  ( ( 1st `  E
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
130128, 129syl6eqr 2513 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  z )  =  ( ( 1st `  z ) ( 1st `  E ) ( 2nd `  z ) ) )
131107, 130opeq12d 4211 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  <. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >.  =  <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. )
132131, 116oveq12d 6288 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( <. ( ( 1st `  Z ) `  z
) ,  ( ( 1st `  E ) `
 z ) >.
(comp `  T )
( ( 1st `  E
) `  w )
)  =  ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) )
133104, 109oveq12d 6288 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( 2nd `  E ) w )  =  ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  E
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
134133, 123fveq12d 5854 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  E ) w ) `  g
)  =  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
)
135 df-ov 6273 . . . . . 6  |-  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) )  =  ( ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
136134, 135syl6eqr 2513 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  E ) w ) `  g
)  =  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )
137104fveq2d 5852 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  z
)  =  ( M `
 <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
138 df-ov 6273 . . . . . 6  |-  ( ( 1st `  z ) M ( 2nd `  z
) )  =  ( M `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
139137, 138syl6eqr 2513 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  z
)  =  ( ( 1st `  z ) M ( 2nd `  z
) ) )
140132, 136, 139oveq123d 6291 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) )  =  ( ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  z
) M ( 2nd `  z ) ) ) )
141102, 127, 1403eqtr4d 2505 . . 3  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( M `  w ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) )
142141ralrimivvva 2876 . 2  |-  ( ph  ->  A. z  e.  ( ( O  Func  S
)  X.  B ) A. w  e.  ( ( O  Func  S
)  X.  B ) A. g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ( ( M `
 w ) (
<. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) )
143 eqid 2454 . . 3  |-  ( ( Q  X.c  O ) Nat  T )  =  ( ( Q  X.c  O ) Nat  T )
144 eqid 2454 . . 3  |-  (comp `  T )  =  (comp `  T )
145143, 33, 91, 29, 144, 37, 44isnat2 15436 . 2  |-  ( ph  ->  ( M  e.  ( Z ( ( Q  X.c  O ) Nat  T ) E )  <->  ( M  e.  X_ z  e.  ( ( O  Func  S
)  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  /\  A. z  e.  ( ( O  Func  S )  X.  B ) A. w  e.  ( ( O  Func  S )  X.  B ) A. g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ( ( M `
 w ) (
<. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) ) ) )
14672, 142, 145mpbir2and 920 1  |-  ( ph  ->  M  e.  ( Z ( ( Q  X.c  O
) Nat  T ) E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    u. cun 3459    C_ wss 3461   <.cop 4022   class class class wbr 4439    |-> cmpt 4497    X. cxp 4986   ran crn 4989   Rel wrel 4993    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   1stc1st 6771   2ndc2nd 6772  tpos ctpos 6946   X_cixp 7462   Basecbs 14716   Hom chom 14795  compcco 14796   Catccat 15153   Idccid 15154   Hom f chomf 15155  oppCatcoppc 15199    Func cfunc 15342    o.func ccofu 15344   Nat cnat 15429   FuncCat cfuc 15430   SetCatcsetc 15553    X.c cxpc 15636    1stF c1stf 15637    2ndF c2ndf 15638   ⟨,⟩F cprf 15639   evalF cevlf 15677  HomFchof 15716  Yoncyon 15717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-hom 14808  df-cco 14809  df-cat 15157  df-cid 15158  df-homf 15159  df-comf 15160  df-oppc 15200  df-ssc 15298  df-resc 15299  df-subc 15300  df-func 15346  df-cofu 15348  df-nat 15431  df-fuc 15432  df-setc 15554  df-xpc 15640  df-1stf 15641  df-2ndf 15642  df-prf 15643  df-evlf 15681  df-curf 15682  df-hof 15718  df-yon 15719
This theorem is referenced by:  yonedainv  15749
  Copyright terms: Public domain W3C validator