MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3 Structured version   Unicode version

Theorem yonedalem3 15095
Description: Lemma for yoneda 15098. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yoneda.m  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
Assertion
Ref Expression
yonedalem3  |-  ( ph  ->  M  e.  ( Z ( ( Q  X.c  O
) Nat  T ) E ) )
Distinct variable groups:    f, a, x,  .1.    C, a, f, x    E, a, f    B, a, f, x    O, a, f, x    S, a, f, x    Q, a, f, x    T, f    ph, a, f, x    Y, a, f, x    Z, a, f, x
Allowed substitution hints:    R( x, f, a)    T( x, a)    U( x, f, a)    E( x)    H( x, f, a)    M( x, f, a)    V( x, f, a)    W( x, f, a)

Proof of Theorem yonedalem3
Dummy variables  g 
y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.m . . . . 5  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
2 ovex 6121 . . . . . 6  |-  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  e.  _V
32mptex 5953 . . . . 5  |-  ( a  e.  ( ( ( 1st `  Y ) `
 x ) ( O Nat  S ) f )  |->  ( ( a `
 x ) `  (  .1.  `  x )
) )  e.  _V
41, 3fnmpt2i 6648 . . . 4  |-  M  Fn  ( ( O  Func  S )  X.  B )
54a1i 11 . . 3  |-  ( ph  ->  M  Fn  ( ( O  Func  S )  X.  B ) )
6 yoneda.y . . . . . . . 8  |-  Y  =  (Yon `  C )
7 yoneda.b . . . . . . . 8  |-  B  =  ( Base `  C
)
8 yoneda.1 . . . . . . . 8  |-  .1.  =  ( Id `  C )
9 yoneda.o . . . . . . . 8  |-  O  =  (oppCat `  C )
10 yoneda.s . . . . . . . 8  |-  S  =  ( SetCat `  U )
11 yoneda.t . . . . . . . 8  |-  T  =  ( SetCat `  V )
12 yoneda.q . . . . . . . 8  |-  Q  =  ( O FuncCat  S )
13 yoneda.h . . . . . . . 8  |-  H  =  (HomF
`  Q )
14 yoneda.r . . . . . . . 8  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
15 yoneda.e . . . . . . . 8  |-  E  =  ( O evalF  S )
16 yoneda.z . . . . . . . 8  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
17 yoneda.c . . . . . . . . 9  |-  ( ph  ->  C  e.  Cat )
1817adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  C  e.  Cat )
19 yoneda.w . . . . . . . . 9  |-  ( ph  ->  V  e.  W )
2019adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  V  e.  W )
21 yoneda.u . . . . . . . . 9  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
2221adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  ran  ( Hom f  `  C )  C_  U )
23 yoneda.v . . . . . . . . 9  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
2423adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ran  ( Hom f  `  Q
)  u.  U ) 
C_  V )
25 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
g  e.  ( O 
Func  S ) )
26 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
y  e.  B )
276, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 1yonedalem3a 15089 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ( g M y )  =  ( a  e.  ( ( ( 1st `  Y
) `  y )
( O Nat  S ) g )  |->  ( ( a `  y ) `
 (  .1.  `  y ) ) )  /\  ( g M y ) : ( g ( 1st `  Z
) y ) --> ( g ( 1st `  E
) y ) ) )
2827simprd 463 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g M y ) : ( g ( 1st `  Z
) y ) --> ( g ( 1st `  E
) y ) )
29 eqid 2443 . . . . . . 7  |-  ( Hom  `  T )  =  ( Hom  `  T )
30 eqid 2443 . . . . . . . . . . 11  |-  ( Q  X.c  O )  =  ( Q  X.c  O )
3112fucbas 14875 . . . . . . . . . . 11  |-  ( O 
Func  S )  =  (
Base `  Q )
329, 7oppcbas 14662 . . . . . . . . . . 11  |-  B  =  ( Base `  O
)
3330, 31, 32xpcbas 14993 . . . . . . . . . 10  |-  ( ( O  Func  S )  X.  B )  =  (
Base `  ( Q  X.c  O ) )
34 eqid 2443 . . . . . . . . . 10  |-  ( Base `  T )  =  (
Base `  T )
35 relfunc 14777 . . . . . . . . . . 11  |-  Rel  (
( Q  X.c  O ) 
Func  T )
366, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23yonedalem1 15087 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  e.  ( ( Q  X.c  O ) 
Func  T )  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
) )
3736simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( ( Q  X.c  O )  Func  T
) )
38 1st2ndbr 6628 . . . . . . . . . . 11  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  Z  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  Z ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
3935, 37, 38sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  Z
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
4033, 34, 39funcf1 14781 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  Z
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
4140fovrnda 6239 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  Z ) y )  e.  ( Base `  T
) )
4211, 20setcbas 14951 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  V  =  ( Base `  T ) )
4341, 42eleqtrrd 2520 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  Z ) y )  e.  V )
4436simprd 463 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  ( ( Q  X.c  O )  Func  T
) )
45 1st2ndbr 6628 . . . . . . . . . . 11  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  E ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
4635, 44, 45sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  E
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
4733, 34, 46funcf1 14781 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  E
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
4847fovrnda 6239 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  E ) y )  e.  ( Base `  T
) )
4948, 42eleqtrrd 2520 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  E ) y )  e.  V )
5011, 20, 29, 43, 49elsetchom 14954 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T
) ( g ( 1st `  E ) y ) )  <->  ( g M y ) : ( g ( 1st `  Z ) y ) --> ( g ( 1st `  E ) y ) ) )
5128, 50mpbird 232 . . . . 5  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g M y )  e.  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
5251ralrimivva 2813 . . . 4  |-  ( ph  ->  A. g  e.  ( O  Func  S ) A. y  e.  B  ( g M y )  e.  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
53 fveq2 5696 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( M `  z )  =  ( M `  <. g ,  y >. )
)
54 df-ov 6099 . . . . . . 7  |-  ( g M y )  =  ( M `  <. g ,  y >. )
5553, 54syl6eqr 2493 . . . . . 6  |-  ( z  =  <. g ,  y
>.  ->  ( M `  z )  =  ( g M y ) )
56 fveq2 5696 . . . . . . . 8  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  Z ) `  z
)  =  ( ( 1st `  Z ) `
 <. g ,  y
>. ) )
57 df-ov 6099 . . . . . . . 8  |-  ( g ( 1st `  Z
) y )  =  ( ( 1st `  Z
) `  <. g ,  y >. )
5856, 57syl6eqr 2493 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  Z ) `  z
)  =  ( g ( 1st `  Z
) y ) )
59 fveq2 5696 . . . . . . . 8  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  E ) `  z
)  =  ( ( 1st `  E ) `
 <. g ,  y
>. ) )
60 df-ov 6099 . . . . . . . 8  |-  ( g ( 1st `  E
) y )  =  ( ( 1st `  E
) `  <. g ,  y >. )
6159, 60syl6eqr 2493 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  E ) `  z
)  =  ( g ( 1st `  E
) y ) )
6258, 61oveq12d 6114 . . . . . 6  |-  ( z  =  <. g ,  y
>.  ->  ( ( ( 1st `  Z ) `
 z ) ( Hom  `  T )
( ( 1st `  E
) `  z )
)  =  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
6355, 62eleq12d 2511 . . . . 5  |-  ( z  =  <. g ,  y
>.  ->  ( ( M `
 z )  e.  ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T ) ( g ( 1st `  E
) y ) ) ) )
6463ralxp 4986 . . . 4  |-  ( A. z  e.  ( ( O  Func  S )  X.  B ) ( M `
 z )  e.  ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  A. g  e.  ( O  Func  S
) A. y  e.  B  ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T
) ( g ( 1st `  E ) y ) ) )
6552, 64sylibr 212 . . 3  |-  ( ph  ->  A. z  e.  ( ( O  Func  S
)  X.  B ) ( M `  z
)  e.  ( ( ( 1st `  Z
) `  z )
( Hom  `  T ) ( ( 1st `  E
) `  z )
) )
66 ovex 6121 . . . . . 6  |-  ( O 
Func  S )  e.  _V
67 fvex 5706 . . . . . . 7  |-  ( Base `  C )  e.  _V
687, 67eqeltri 2513 . . . . . 6  |-  B  e. 
_V
6966, 68mpt2ex 6655 . . . . 5  |-  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y ) `  x
) ( O Nat  S
) f )  |->  ( ( a `  x
) `  (  .1.  `  x ) ) ) )  e.  _V
701, 69eqeltri 2513 . . . 4  |-  M  e. 
_V
7170elixp 7275 . . 3  |-  ( M  e.  X_ z  e.  ( ( O  Func  S
)  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  ( M  Fn  ( ( O  Func  S )  X.  B )  /\  A. z  e.  ( ( O  Func  S )  X.  B ) ( M `  z
)  e.  ( ( ( 1st `  Z
) `  z )
( Hom  `  T ) ( ( 1st `  E
) `  z )
) ) )
725, 65, 71sylanbrc 664 . 2  |-  ( ph  ->  M  e.  X_ z  e.  ( ( O  Func  S )  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) ) )
7317adantr 465 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  C  e.  Cat )
7419adantr 465 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  V  e.  W )
7521adantr 465 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  ran  ( Hom f  `  C )  C_  U )
7623adantr 465 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ran  ( Hom f  `  Q
)  u.  U ) 
C_  V )
77 simpr1 994 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
z  e.  ( ( O  Func  S )  X.  B ) )
78 xp1st 6611 . . . . . 6  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 1st `  z )  e.  ( O  Func  S )
)
7977, 78syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  z
)  e.  ( O 
Func  S ) )
80 xp2nd 6612 . . . . . 6  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 2nd `  z )  e.  B
)
8177, 80syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  z
)  e.  B )
82 simpr2 995 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  w  e.  ( ( O  Func  S )  X.  B ) )
83 xp1st 6611 . . . . . 6  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 1st `  w )  e.  ( O  Func  S )
)
8482, 83syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  w
)  e.  ( O 
Func  S ) )
85 xp2nd 6612 . . . . . 6  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 2nd `  w )  e.  B
)
8682, 85syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  w
)  e.  B )
87 simpr3 996 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) )
88 eqid 2443 . . . . . . . . . 10  |-  ( O Nat 
S )  =  ( O Nat  S )
8912, 88fuchom 14876 . . . . . . . . 9  |-  ( O Nat 
S )  =  ( Hom  `  Q )
90 eqid 2443 . . . . . . . . 9  |-  ( Hom  `  O )  =  ( Hom  `  O )
91 eqid 2443 . . . . . . . . 9  |-  ( Hom  `  ( Q  X.c  O ) )  =  ( Hom  `  ( Q  X.c  O ) )
9230, 33, 89, 90, 91, 77, 82xpchom 14995 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( Hom  `  ( Q  X.c  O ) ) w )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  z
) ( Hom  `  O
) ( 2nd `  w
) ) ) )
93 eqid 2443 . . . . . . . . . 10  |-  ( Hom  `  C )  =  ( Hom  `  C )
9493, 9oppchom 14659 . . . . . . . . 9  |-  ( ( 2nd `  z ) ( Hom  `  O
) ( 2nd `  w
) )  =  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) )
9594xpeq2i 4866 . . . . . . . 8  |-  ( ( ( 1st `  z
) ( O Nat  S
) ( 1st `  w
) )  X.  (
( 2nd `  z
) ( Hom  `  O
) ( 2nd `  w
) ) )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )
9692, 95syl6eq 2491 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( Hom  `  ( Q  X.c  O ) ) w )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
9787, 96eleqtrd 2519 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  e.  ( ( ( 1st `  z
) ( O Nat  S
) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
98 xp1st 6611 . . . . . 6  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) ) )
9997, 98syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) ) )
100 xp2nd 6612 . . . . . 6  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  w ) ( Hom  `  C
) ( 2nd `  z
) ) )
10197, 100syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  w ) ( Hom  `  C
) ( 2nd `  z
) ) )
1026, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 73, 74, 75, 76, 79, 81, 84, 86, 99, 101, 1yonedalem3b 15094 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( ( 1st `  w ) M ( 2nd `  w ) ) ( <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  g
) ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )  =  ( ( ( 1st `  g ) ( <.
( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  z
) M ( 2nd `  z ) ) ) )
103 1st2nd2 6618 . . . . . . . . . 10  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
10477, 103syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
105104fveq2d 5700 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  z )  =  ( ( 1st `  Z ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
106 df-ov 6099 . . . . . . . 8  |-  ( ( 1st `  z ) ( 1st `  Z
) ( 2nd `  z
) )  =  ( ( 1st `  Z
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
107105, 106syl6eqr 2493 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  z )  =  ( ( 1st `  z ) ( 1st `  Z ) ( 2nd `  z ) ) )
108 1st2nd2 6618 . . . . . . . . . 10  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  w  =  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
10982, 108syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  w  =  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
110109fveq2d 5700 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  w )  =  ( ( 1st `  Z ) `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
111 df-ov 6099 . . . . . . . 8  |-  ( ( 1st `  w ) ( 1st `  Z
) ( 2nd `  w
) )  =  ( ( 1st `  Z
) `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
112110, 111syl6eqr 2493 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  w )  =  ( ( 1st `  w ) ( 1st `  Z ) ( 2nd `  w ) ) )
113107, 112opeq12d 4072 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  <. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >.  =  <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. )
114109fveq2d 5700 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  w )  =  ( ( 1st `  E ) `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
115 df-ov 6099 . . . . . . 7  |-  ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) )  =  ( ( 1st `  E
) `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
116114, 115syl6eqr 2493 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  w )  =  ( ( 1st `  w ) ( 1st `  E ) ( 2nd `  w ) ) )
117113, 116oveq12d 6114 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( <. ( ( 1st `  Z ) `  z
) ,  ( ( 1st `  Z ) `
 w ) >.
(comp `  T )
( ( 1st `  E
) `  w )
)  =  ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) )
118109fveq2d 5700 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  w
)  =  ( M `
 <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
119 df-ov 6099 . . . . . 6  |-  ( ( 1st `  w ) M ( 2nd `  w
) )  =  ( M `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
120118, 119syl6eqr 2493 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  w
)  =  ( ( 1st `  w ) M ( 2nd `  w
) ) )
121104, 109oveq12d 6114 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( 2nd `  Z ) w )  =  ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
122 1st2nd2 6618 . . . . . . . 8  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
12397, 122syl 16 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
124121, 123fveq12d 5702 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  Z ) w ) `  g
)  =  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
)
125 df-ov 6099 . . . . . 6  |-  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) )  =  ( ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
126124, 125syl6eqr 2493 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  Z ) w ) `  g
)  =  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )
127117, 120, 126oveq123d 6117 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( M `  w ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( 1st `  w ) M ( 2nd `  w ) ) ( <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  g
) ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ) )
128104fveq2d 5700 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  z )  =  ( ( 1st `  E ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
129 df-ov 6099 . . . . . . . 8  |-  ( ( 1st `  z ) ( 1st `  E
) ( 2nd `  z
) )  =  ( ( 1st `  E
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
130128, 129syl6eqr 2493 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  z )  =  ( ( 1st `  z ) ( 1st `  E ) ( 2nd `  z ) ) )
131107, 130opeq12d 4072 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  <. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >.  =  <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. )
132131, 116oveq12d 6114 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( <. ( ( 1st `  Z ) `  z
) ,  ( ( 1st `  E ) `
 z ) >.
(comp `  T )
( ( 1st `  E
) `  w )
)  =  ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) )
133104, 109oveq12d 6114 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( 2nd `  E ) w )  =  ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  E
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
134133, 123fveq12d 5702 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  E ) w ) `  g
)  =  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
)
135 df-ov 6099 . . . . . 6  |-  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) )  =  ( ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
136134, 135syl6eqr 2493 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  E ) w ) `  g
)  =  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )
137104fveq2d 5700 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  z
)  =  ( M `
 <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
138 df-ov 6099 . . . . . 6  |-  ( ( 1st `  z ) M ( 2nd `  z
) )  =  ( M `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
139137, 138syl6eqr 2493 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  z
)  =  ( ( 1st `  z ) M ( 2nd `  z
) ) )
140132, 136, 139oveq123d 6117 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) )  =  ( ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  z
) M ( 2nd `  z ) ) ) )
141102, 127, 1403eqtr4d 2485 . . 3  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( M `  w ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) )
142141ralrimivvva 2814 . 2  |-  ( ph  ->  A. z  e.  ( ( O  Func  S
)  X.  B ) A. w  e.  ( ( O  Func  S
)  X.  B ) A. g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ( ( M `
 w ) (
<. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) )
143 eqid 2443 . . 3  |-  ( ( Q  X.c  O ) Nat  T )  =  ( ( Q  X.c  O ) Nat  T )
144 eqid 2443 . . 3  |-  (comp `  T )  =  (comp `  T )
145143, 33, 91, 29, 144, 37, 44isnat2 14863 . 2  |-  ( ph  ->  ( M  e.  ( Z ( ( Q  X.c  O ) Nat  T ) E )  <->  ( M  e.  X_ z  e.  ( ( O  Func  S
)  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  /\  A. z  e.  ( ( O  Func  S )  X.  B ) A. w  e.  ( ( O  Func  S )  X.  B ) A. g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ( ( M `
 w ) (
<. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) ) ) )
14672, 142, 145mpbir2and 913 1  |-  ( ph  ->  M  e.  ( Z ( ( Q  X.c  O
) Nat  T ) E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   _Vcvv 2977    u. cun 3331    C_ wss 3333   <.cop 3888   class class class wbr 4297    e. cmpt 4355    X. cxp 4843   ran crn 4846   Rel wrel 4850    Fn wfn 5418   -->wf 5419   ` cfv 5423  (class class class)co 6096    e. cmpt2 6098   1stc1st 6580   2ndc2nd 6581  tpos ctpos 6749   X_cixp 7268   Basecbs 14179   Hom chom 14254  compcco 14255   Catccat 14607   Idccid 14608   Hom f chomf 14609  oppCatcoppc 14655    Func cfunc 14769    o.func ccofu 14771   Nat cnat 14856   FuncCat cfuc 14857   SetCatcsetc 14948    X.c cxpc 14983    1stF c1stf 14984    2ndF c2ndf 14985   ⟨,⟩F cprf 14986   evalF cevlf 15024  HomFchof 15063  Yoncyon 15064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-tpos 6750  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-pm 7222  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-fz 11443  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-hom 14267  df-cco 14268  df-cat 14611  df-cid 14612  df-homf 14613  df-comf 14614  df-oppc 14656  df-ssc 14728  df-resc 14729  df-subc 14730  df-func 14773  df-cofu 14775  df-nat 14858  df-fuc 14859  df-setc 14949  df-xpc 14987  df-1stf 14988  df-2ndf 14989  df-prf 14990  df-evlf 15028  df-curf 15029  df-hof 15065  df-yon 15066
This theorem is referenced by:  yonedainv  15096
  Copyright terms: Public domain W3C validator