MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3 Structured version   Unicode version

Theorem yonedalem3 15403
Description: Lemma for yoneda 15406. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yoneda.m  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
Assertion
Ref Expression
yonedalem3  |-  ( ph  ->  M  e.  ( Z ( ( Q  X.c  O
) Nat  T ) E ) )
Distinct variable groups:    f, a, x,  .1.    C, a, f, x    E, a, f    B, a, f, x    O, a, f, x    S, a, f, x    Q, a, f, x    T, f    ph, a, f, x    Y, a, f, x    Z, a, f, x
Allowed substitution hints:    R( x, f, a)    T( x, a)    U( x, f, a)    E( x)    H( x, f, a)    M( x, f, a)    V( x, f, a)    W( x, f, a)

Proof of Theorem yonedalem3
Dummy variables  g 
y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.m . . . . 5  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
2 ovex 6307 . . . . . 6  |-  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  e.  _V
32mptex 6129 . . . . 5  |-  ( a  e.  ( ( ( 1st `  Y ) `
 x ) ( O Nat  S ) f )  |->  ( ( a `
 x ) `  (  .1.  `  x )
) )  e.  _V
41, 3fnmpt2i 6850 . . . 4  |-  M  Fn  ( ( O  Func  S )  X.  B )
54a1i 11 . . 3  |-  ( ph  ->  M  Fn  ( ( O  Func  S )  X.  B ) )
6 yoneda.y . . . . . . . 8  |-  Y  =  (Yon `  C )
7 yoneda.b . . . . . . . 8  |-  B  =  ( Base `  C
)
8 yoneda.1 . . . . . . . 8  |-  .1.  =  ( Id `  C )
9 yoneda.o . . . . . . . 8  |-  O  =  (oppCat `  C )
10 yoneda.s . . . . . . . 8  |-  S  =  ( SetCat `  U )
11 yoneda.t . . . . . . . 8  |-  T  =  ( SetCat `  V )
12 yoneda.q . . . . . . . 8  |-  Q  =  ( O FuncCat  S )
13 yoneda.h . . . . . . . 8  |-  H  =  (HomF
`  Q )
14 yoneda.r . . . . . . . 8  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
15 yoneda.e . . . . . . . 8  |-  E  =  ( O evalF  S )
16 yoneda.z . . . . . . . 8  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
17 yoneda.c . . . . . . . . 9  |-  ( ph  ->  C  e.  Cat )
1817adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  C  e.  Cat )
19 yoneda.w . . . . . . . . 9  |-  ( ph  ->  V  e.  W )
2019adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  V  e.  W )
21 yoneda.u . . . . . . . . 9  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
2221adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  ran  ( Hom f  `  C )  C_  U )
23 yoneda.v . . . . . . . . 9  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
2423adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ran  ( Hom f  `  Q
)  u.  U ) 
C_  V )
25 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
g  e.  ( O 
Func  S ) )
26 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
y  e.  B )
276, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 1yonedalem3a 15397 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ( g M y )  =  ( a  e.  ( ( ( 1st `  Y
) `  y )
( O Nat  S ) g )  |->  ( ( a `  y ) `
 (  .1.  `  y ) ) )  /\  ( g M y ) : ( g ( 1st `  Z
) y ) --> ( g ( 1st `  E
) y ) ) )
2827simprd 463 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g M y ) : ( g ( 1st `  Z
) y ) --> ( g ( 1st `  E
) y ) )
29 eqid 2467 . . . . . . 7  |-  ( Hom  `  T )  =  ( Hom  `  T )
30 eqid 2467 . . . . . . . . . . 11  |-  ( Q  X.c  O )  =  ( Q  X.c  O )
3112fucbas 15183 . . . . . . . . . . 11  |-  ( O 
Func  S )  =  (
Base `  Q )
329, 7oppcbas 14970 . . . . . . . . . . 11  |-  B  =  ( Base `  O
)
3330, 31, 32xpcbas 15301 . . . . . . . . . 10  |-  ( ( O  Func  S )  X.  B )  =  (
Base `  ( Q  X.c  O ) )
34 eqid 2467 . . . . . . . . . 10  |-  ( Base `  T )  =  (
Base `  T )
35 relfunc 15085 . . . . . . . . . . 11  |-  Rel  (
( Q  X.c  O ) 
Func  T )
366, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23yonedalem1 15395 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  e.  ( ( Q  X.c  O ) 
Func  T )  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
) )
3736simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( ( Q  X.c  O )  Func  T
) )
38 1st2ndbr 6830 . . . . . . . . . . 11  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  Z  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  Z ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
3935, 37, 38sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  Z
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
4033, 34, 39funcf1 15089 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  Z
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
4140fovrnda 6428 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  Z ) y )  e.  ( Base `  T
) )
4211, 20setcbas 15259 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  ->  V  =  ( Base `  T ) )
4341, 42eleqtrrd 2558 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  Z ) y )  e.  V )
4436simprd 463 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  ( ( Q  X.c  O )  Func  T
) )
45 1st2ndbr 6830 . . . . . . . . . . 11  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  E ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
4635, 44, 45sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  E
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
4733, 34, 46funcf1 15089 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  E
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
4847fovrnda 6428 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  E ) y )  e.  ( Base `  T
) )
4948, 42eleqtrrd 2558 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g ( 1st `  E ) y )  e.  V )
5011, 20, 29, 43, 49elsetchom 15262 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T
) ( g ( 1st `  E ) y ) )  <->  ( g M y ) : ( g ( 1st `  Z ) y ) --> ( g ( 1st `  E ) y ) ) )
5128, 50mpbird 232 . . . . 5  |-  ( (
ph  /\  ( g  e.  ( O  Func  S
)  /\  y  e.  B ) )  -> 
( g M y )  e.  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
5251ralrimivva 2885 . . . 4  |-  ( ph  ->  A. g  e.  ( O  Func  S ) A. y  e.  B  ( g M y )  e.  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
53 fveq2 5864 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( M `  z )  =  ( M `  <. g ,  y >. )
)
54 df-ov 6285 . . . . . . 7  |-  ( g M y )  =  ( M `  <. g ,  y >. )
5553, 54syl6eqr 2526 . . . . . 6  |-  ( z  =  <. g ,  y
>.  ->  ( M `  z )  =  ( g M y ) )
56 fveq2 5864 . . . . . . . 8  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  Z ) `  z
)  =  ( ( 1st `  Z ) `
 <. g ,  y
>. ) )
57 df-ov 6285 . . . . . . . 8  |-  ( g ( 1st `  Z
) y )  =  ( ( 1st `  Z
) `  <. g ,  y >. )
5856, 57syl6eqr 2526 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  Z ) `  z
)  =  ( g ( 1st `  Z
) y ) )
59 fveq2 5864 . . . . . . . 8  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  E ) `  z
)  =  ( ( 1st `  E ) `
 <. g ,  y
>. ) )
60 df-ov 6285 . . . . . . . 8  |-  ( g ( 1st `  E
) y )  =  ( ( 1st `  E
) `  <. g ,  y >. )
6159, 60syl6eqr 2526 . . . . . . 7  |-  ( z  =  <. g ,  y
>.  ->  ( ( 1st `  E ) `  z
)  =  ( g ( 1st `  E
) y ) )
6258, 61oveq12d 6300 . . . . . 6  |-  ( z  =  <. g ,  y
>.  ->  ( ( ( 1st `  Z ) `
 z ) ( Hom  `  T )
( ( 1st `  E
) `  z )
)  =  ( ( g ( 1st `  Z
) y ) ( Hom  `  T )
( g ( 1st `  E ) y ) ) )
6355, 62eleq12d 2549 . . . . 5  |-  ( z  =  <. g ,  y
>.  ->  ( ( M `
 z )  e.  ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T ) ( g ( 1st `  E
) y ) ) ) )
6463ralxp 5142 . . . 4  |-  ( A. z  e.  ( ( O  Func  S )  X.  B ) ( M `
 z )  e.  ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  A. g  e.  ( O  Func  S
) A. y  e.  B  ( g M y )  e.  ( ( g ( 1st `  Z ) y ) ( Hom  `  T
) ( g ( 1st `  E ) y ) ) )
6552, 64sylibr 212 . . 3  |-  ( ph  ->  A. z  e.  ( ( O  Func  S
)  X.  B ) ( M `  z
)  e.  ( ( ( 1st `  Z
) `  z )
( Hom  `  T ) ( ( 1st `  E
) `  z )
) )
66 ovex 6307 . . . . . 6  |-  ( O 
Func  S )  e.  _V
67 fvex 5874 . . . . . . 7  |-  ( Base `  C )  e.  _V
687, 67eqeltri 2551 . . . . . 6  |-  B  e. 
_V
6966, 68mpt2ex 6857 . . . . 5  |-  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y ) `  x
) ( O Nat  S
) f )  |->  ( ( a `  x
) `  (  .1.  `  x ) ) ) )  e.  _V
701, 69eqeltri 2551 . . . 4  |-  M  e. 
_V
7170elixp 7473 . . 3  |-  ( M  e.  X_ z  e.  ( ( O  Func  S
)  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  <->  ( M  Fn  ( ( O  Func  S )  X.  B )  /\  A. z  e.  ( ( O  Func  S )  X.  B ) ( M `  z
)  e.  ( ( ( 1st `  Z
) `  z )
( Hom  `  T ) ( ( 1st `  E
) `  z )
) ) )
725, 65, 71sylanbrc 664 . 2  |-  ( ph  ->  M  e.  X_ z  e.  ( ( O  Func  S )  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) ) )
7317adantr 465 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  C  e.  Cat )
7419adantr 465 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  V  e.  W )
7521adantr 465 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  ran  ( Hom f  `  C )  C_  U )
7623adantr 465 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ran  ( Hom f  `  Q
)  u.  U ) 
C_  V )
77 simpr1 1002 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
z  e.  ( ( O  Func  S )  X.  B ) )
78 xp1st 6811 . . . . . 6  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 1st `  z )  e.  ( O  Func  S )
)
7977, 78syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  z
)  e.  ( O 
Func  S ) )
80 xp2nd 6812 . . . . . 6  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 2nd `  z )  e.  B
)
8177, 80syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  z
)  e.  B )
82 simpr2 1003 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  w  e.  ( ( O  Func  S )  X.  B ) )
83 xp1st 6811 . . . . . 6  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 1st `  w )  e.  ( O  Func  S )
)
8482, 83syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  w
)  e.  ( O 
Func  S ) )
85 xp2nd 6812 . . . . . 6  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  ( 2nd `  w )  e.  B
)
8682, 85syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  w
)  e.  B )
87 simpr3 1004 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) )
88 eqid 2467 . . . . . . . . . 10  |-  ( O Nat 
S )  =  ( O Nat  S )
8912, 88fuchom 15184 . . . . . . . . 9  |-  ( O Nat 
S )  =  ( Hom  `  Q )
90 eqid 2467 . . . . . . . . 9  |-  ( Hom  `  O )  =  ( Hom  `  O )
91 eqid 2467 . . . . . . . . 9  |-  ( Hom  `  ( Q  X.c  O ) )  =  ( Hom  `  ( Q  X.c  O ) )
9230, 33, 89, 90, 91, 77, 82xpchom 15303 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( Hom  `  ( Q  X.c  O ) ) w )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  z
) ( Hom  `  O
) ( 2nd `  w
) ) ) )
93 eqid 2467 . . . . . . . . . 10  |-  ( Hom  `  C )  =  ( Hom  `  C )
9493, 9oppchom 14967 . . . . . . . . 9  |-  ( ( 2nd `  z ) ( Hom  `  O
) ( 2nd `  w
) )  =  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) )
9594xpeq2i 5020 . . . . . . . 8  |-  ( ( ( 1st `  z
) ( O Nat  S
) ( 1st `  w
) )  X.  (
( 2nd `  z
) ( Hom  `  O
) ( 2nd `  w
) ) )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )
9692, 95syl6eq 2524 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( Hom  `  ( Q  X.c  O ) ) w )  =  ( ( ( 1st `  z ) ( O Nat 
S ) ( 1st `  w ) )  X.  ( ( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
9787, 96eleqtrd 2557 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  e.  ( ( ( 1st `  z
) ( O Nat  S
) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
98 xp1st 6811 . . . . . 6  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) ) )
9997, 98syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) ) )
100 xp2nd 6812 . . . . . 6  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  w ) ( Hom  `  C
) ( 2nd `  z
) ) )
10197, 100syl 16 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  w ) ( Hom  `  C
) ( 2nd `  z
) ) )
1026, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 73, 74, 75, 76, 79, 81, 84, 86, 99, 101, 1yonedalem3b 15402 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( ( 1st `  w ) M ( 2nd `  w ) ) ( <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  g
) ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )  =  ( ( ( 1st `  g ) ( <.
( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  z
) M ( 2nd `  z ) ) ) )
103 1st2nd2 6818 . . . . . . . . . 10  |-  ( z  e.  ( ( O 
Func  S )  X.  B
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
10477, 103syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
105104fveq2d 5868 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  z )  =  ( ( 1st `  Z ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
106 df-ov 6285 . . . . . . . 8  |-  ( ( 1st `  z ) ( 1st `  Z
) ( 2nd `  z
) )  =  ( ( 1st `  Z
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
107105, 106syl6eqr 2526 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  z )  =  ( ( 1st `  z ) ( 1st `  Z ) ( 2nd `  z ) ) )
108 1st2nd2 6818 . . . . . . . . . 10  |-  ( w  e.  ( ( O 
Func  S )  X.  B
)  ->  w  =  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
10982, 108syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  w  =  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
110109fveq2d 5868 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  w )  =  ( ( 1st `  Z ) `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
111 df-ov 6285 . . . . . . . 8  |-  ( ( 1st `  w ) ( 1st `  Z
) ( 2nd `  w
) )  =  ( ( 1st `  Z
) `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
112110, 111syl6eqr 2526 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  Z
) `  w )  =  ( ( 1st `  w ) ( 1st `  Z ) ( 2nd `  w ) ) )
113107, 112opeq12d 4221 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  <. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >.  =  <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. )
114109fveq2d 5868 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  w )  =  ( ( 1st `  E ) `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
115 df-ov 6285 . . . . . . 7  |-  ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) )  =  ( ( 1st `  E
) `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )
116114, 115syl6eqr 2526 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  w )  =  ( ( 1st `  w ) ( 1st `  E ) ( 2nd `  w ) ) )
117113, 116oveq12d 6300 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( <. ( ( 1st `  Z ) `  z
) ,  ( ( 1st `  Z ) `
 w ) >.
(comp `  T )
( ( 1st `  E
) `  w )
)  =  ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) )
118109fveq2d 5868 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  w
)  =  ( M `
 <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
119 df-ov 6285 . . . . . 6  |-  ( ( 1st `  w ) M ( 2nd `  w
) )  =  ( M `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
120118, 119syl6eqr 2526 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  w
)  =  ( ( 1st `  w ) M ( 2nd `  w
) ) )
121104, 109oveq12d 6300 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( 2nd `  Z ) w )  =  ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
122 1st2nd2 6818 . . . . . . . 8  |-  ( g  e.  ( ( ( 1st `  z ) ( O Nat  S ) ( 1st `  w
) )  X.  (
( 2nd `  w
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
12397, 122syl 16 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
124121, 123fveq12d 5870 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  Z ) w ) `  g
)  =  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
)
125 df-ov 6285 . . . . . 6  |-  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) )  =  ( ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
126124, 125syl6eqr 2526 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  Z ) w ) `  g
)  =  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  Z ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )
127117, 120, 126oveq123d 6303 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( M `  w ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( 1st `  w ) M ( 2nd `  w ) ) ( <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  w
) ( 1st `  Z
) ( 2nd `  w
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  g
) ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  Z
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ) )
128104fveq2d 5868 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  z )  =  ( ( 1st `  E ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
129 df-ov 6285 . . . . . . . 8  |-  ( ( 1st `  z ) ( 1st `  E
) ( 2nd `  z
) )  =  ( ( 1st `  E
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
130128, 129syl6eqr 2526 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( 1st `  E
) `  z )  =  ( ( 1st `  z ) ( 1st `  E ) ( 2nd `  z ) ) )
131107, 130opeq12d 4221 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  ->  <. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >.  =  <. (
( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. )
132131, 116oveq12d 6300 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( <. ( ( 1st `  Z ) `  z
) ,  ( ( 1st `  E ) `
 z ) >.
(comp `  T )
( ( 1st `  E
) `  w )
)  =  ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) )
133104, 109oveq12d 6300 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( z ( 2nd `  E ) w )  =  ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. ( 2nd `  E
) <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
134133, 123fveq12d 5870 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  E ) w ) `  g
)  =  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
)
135 df-ov 6285 . . . . . 6  |-  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) )  =  ( ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
136134, 135syl6eqr 2526 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( z ( 2nd `  E ) w ) `  g
)  =  ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) )
137104fveq2d 5868 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  z
)  =  ( M `
 <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
138 df-ov 6285 . . . . . 6  |-  ( ( 1st `  z ) M ( 2nd `  z
) )  =  ( M `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
139137, 138syl6eqr 2526 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( M `  z
)  =  ( ( 1st `  z ) M ( 2nd `  z
) ) )
140132, 136, 139oveq123d 6303 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) )  =  ( ( ( 1st `  g ) ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. ( 2nd `  E ) <.
( 1st `  w
) ,  ( 2nd `  w ) >. )
( 2nd `  g
) ) ( <.
( ( 1st `  z
) ( 1st `  Z
) ( 2nd `  z
) ) ,  ( ( 1st `  z
) ( 1st `  E
) ( 2nd `  z
) ) >. (comp `  T ) ( ( 1st `  w ) ( 1st `  E
) ( 2nd `  w
) ) ) ( ( 1st `  z
) M ( 2nd `  z ) ) ) )
141102, 127, 1403eqtr4d 2518 . . 3  |-  ( (
ph  /\  ( z  e.  ( ( O  Func  S )  X.  B )  /\  w  e.  ( ( O  Func  S
)  X.  B )  /\  g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ) )  -> 
( ( M `  w ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) )
142141ralrimivvva 2886 . 2  |-  ( ph  ->  A. z  e.  ( ( O  Func  S
)  X.  B ) A. w  e.  ( ( O  Func  S
)  X.  B ) A. g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ( ( M `
 w ) (
<. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) )
143 eqid 2467 . . 3  |-  ( ( Q  X.c  O ) Nat  T )  =  ( ( Q  X.c  O ) Nat  T )
144 eqid 2467 . . 3  |-  (comp `  T )  =  (comp `  T )
145143, 33, 91, 29, 144, 37, 44isnat2 15171 . 2  |-  ( ph  ->  ( M  e.  ( Z ( ( Q  X.c  O ) Nat  T ) E )  <->  ( M  e.  X_ z  e.  ( ( O  Func  S
)  X.  B ) ( ( ( 1st `  Z ) `  z
) ( Hom  `  T
) ( ( 1st `  E ) `  z
) )  /\  A. z  e.  ( ( O  Func  S )  X.  B ) A. w  e.  ( ( O  Func  S )  X.  B ) A. g  e.  ( z ( Hom  `  ( Q  X.c  O ) ) w ) ( ( M `
 w ) (
<. ( ( 1st `  Z
) `  z ) ,  ( ( 1st `  Z ) `  w
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( ( z ( 2nd `  Z
) w ) `  g ) )  =  ( ( ( z ( 2nd `  E
) w ) `  g ) ( <.
( ( 1st `  Z
) `  z ) ,  ( ( 1st `  E ) `  z
) >. (comp `  T
) ( ( 1st `  E ) `  w
) ) ( M `
 z ) ) ) ) )
14672, 142, 145mpbir2and 920 1  |-  ( ph  ->  M  e.  ( Z ( ( Q  X.c  O
) Nat  T ) E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    u. cun 3474    C_ wss 3476   <.cop 4033   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   ran crn 5000   Rel wrel 5004    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   1stc1st 6779   2ndc2nd 6780  tpos ctpos 6951   X_cixp 7466   Basecbs 14486   Hom chom 14562  compcco 14563   Catccat 14915   Idccid 14916   Hom f chomf 14917  oppCatcoppc 14963    Func cfunc 15077    o.func ccofu 15079   Nat cnat 15164   FuncCat cfuc 15165   SetCatcsetc 15256    X.c cxpc 15291    1stF c1stf 15292    2ndF c2ndf 15293   ⟨,⟩F cprf 15294   evalF cevlf 15332  HomFchof 15371  Yoncyon 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-hom 14575  df-cco 14576  df-cat 14919  df-cid 14920  df-homf 14921  df-comf 14922  df-oppc 14964  df-ssc 15036  df-resc 15037  df-subc 15038  df-func 15081  df-cofu 15083  df-nat 15166  df-fuc 15167  df-setc 15257  df-xpc 15295  df-1stf 15296  df-2ndf 15297  df-prf 15298  df-evlf 15336  df-curf 15337  df-hof 15373  df-yon 15374
This theorem is referenced by:  yonedainv  15404
  Copyright terms: Public domain W3C validator