MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem21 Structured version   Unicode version

Theorem yonedalem21 15095
Description: Lemma for yoneda 15105. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yonedalem21.f  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
yonedalem21.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
yonedalem21  |-  ( ph  ->  ( F ( 1st `  Z ) X )  =  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) )

Proof of Theorem yonedalem21
StepHypRef Expression
1 yoneda.z . . . . . 6  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
21fveq2i 5706 . . . . 5  |-  ( 1st `  Z )  =  ( 1st `  ( H  o.func  ( ( <. ( 1st `  Y ) , tpos  ( 2nd `  Y
) >.  o.func  ( Q  2ndF  O )
) ⟨,⟩F  ( Q  1stF  O ) ) ) )
32oveqi 6116 . . . 4  |-  ( F ( 1st `  Z
) X )  =  ( F ( 1st `  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) ) ) X )
4 df-ov 6106 . . . 4  |-  ( F ( 1st `  ( H  o.func  ( ( <. ( 1st `  Y ) , tpos  ( 2nd `  Y
) >.  o.func  ( Q  2ndF  O )
) ⟨,⟩F  ( Q  1stF  O ) ) ) ) X )  =  ( ( 1st `  ( H  o.func  ( ( <. ( 1st `  Y ) , tpos  ( 2nd `  Y
) >.  o.func  ( Q  2ndF  O )
) ⟨,⟩F  ( Q  1stF  O ) ) ) ) `  <. F ,  X >. )
53, 4eqtri 2463 . . 3  |-  ( F ( 1st `  Z
) X )  =  ( ( 1st `  ( H  o.func  ( ( <. ( 1st `  Y ) , tpos  ( 2nd `  Y
) >.  o.func  ( Q  2ndF  O )
) ⟨,⟩F  ( Q  1stF  O ) ) ) ) `  <. F ,  X >. )
6 eqid 2443 . . . . 5  |-  ( Q  X.c  O )  =  ( Q  X.c  O )
7 yoneda.q . . . . . 6  |-  Q  =  ( O FuncCat  S )
87fucbas 14882 . . . . 5  |-  ( O 
Func  S )  =  (
Base `  Q )
9 yoneda.o . . . . . 6  |-  O  =  (oppCat `  C )
10 yoneda.b . . . . . 6  |-  B  =  ( Base `  C
)
119, 10oppcbas 14669 . . . . 5  |-  B  =  ( Base `  O
)
126, 8, 11xpcbas 15000 . . . 4  |-  ( ( O  Func  S )  X.  B )  =  (
Base `  ( Q  X.c  O ) )
13 eqid 2443 . . . . 5  |-  ( (
<. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
)  =  ( (
<. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
)
14 eqid 2443 . . . . 5  |-  ( (oppCat `  Q )  X.c  Q )  =  ( (oppCat `  Q )  X.c  Q )
15 yoneda.c . . . . . . . . 9  |-  ( ph  ->  C  e.  Cat )
169oppccat 14673 . . . . . . . . 9  |-  ( C  e.  Cat  ->  O  e.  Cat )
1715, 16syl 16 . . . . . . . 8  |-  ( ph  ->  O  e.  Cat )
18 yoneda.w . . . . . . . . . 10  |-  ( ph  ->  V  e.  W )
19 yoneda.v . . . . . . . . . . 11  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
2019unssbd 3546 . . . . . . . . . 10  |-  ( ph  ->  U  C_  V )
2118, 20ssexd 4451 . . . . . . . . 9  |-  ( ph  ->  U  e.  _V )
22 yoneda.s . . . . . . . . . 10  |-  S  =  ( SetCat `  U )
2322setccat 14965 . . . . . . . . 9  |-  ( U  e.  _V  ->  S  e.  Cat )
2421, 23syl 16 . . . . . . . 8  |-  ( ph  ->  S  e.  Cat )
257, 17, 24fuccat 14892 . . . . . . 7  |-  ( ph  ->  Q  e.  Cat )
26 eqid 2443 . . . . . . 7  |-  ( Q  2ndF  O )  =  ( Q  2ndF  O )
276, 25, 17, 262ndfcl 15020 . . . . . 6  |-  ( ph  ->  ( Q  2ndF  O )  e.  ( ( Q  X.c  O
)  Func  O )
)
28 eqid 2443 . . . . . . . 8  |-  (oppCat `  Q )  =  (oppCat `  Q )
29 relfunc 14784 . . . . . . . . 9  |-  Rel  ( C  Func  Q )
30 yoneda.y . . . . . . . . . 10  |-  Y  =  (Yon `  C )
31 yoneda.u . . . . . . . . . 10  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
3230, 15, 9, 22, 7, 21, 31yoncl 15084 . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( C 
Func  Q ) )
33 1st2ndbr 6635 . . . . . . . . 9  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
) )
3429, 32, 33sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
359, 28, 34funcoppc 14797 . . . . . . 7  |-  ( ph  ->  ( 1st `  Y
) ( O  Func  (oppCat `  Q ) )tpos  ( 2nd `  Y ) )
36 df-br 4305 . . . . . . 7  |-  ( ( 1st `  Y ) ( O  Func  (oppCat `  Q ) )tpos  ( 2nd `  Y )  <->  <. ( 1st `  Y ) , tpos  ( 2nd `  Y ) >.  e.  ( O  Func  (oppCat `  Q ) ) )
3735, 36sylib 196 . . . . . 6  |-  ( ph  -> 
<. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  e.  ( O  Func  (oppCat `  Q
) ) )
3827, 37cofucl 14810 . . . . 5  |-  ( ph  ->  ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) )  e.  ( ( Q  X.c  O ) 
Func  (oppCat `  Q )
) )
39 eqid 2443 . . . . . 6  |-  ( Q  1stF  O )  =  ( Q  1stF  O )
406, 25, 17, 391stfcl 15019 . . . . 5  |-  ( ph  ->  ( Q  1stF  O )  e.  ( ( Q  X.c  O
)  Func  Q )
)
4113, 14, 38, 40prfcl 15025 . . . 4  |-  ( ph  ->  ( ( <. ( 1st `  Y ) , tpos  ( 2nd `  Y
) >.  o.func  ( Q  2ndF  O )
) ⟨,⟩F  ( Q  1stF  O ) )  e.  ( ( Q  X.c  O
)  Func  ( (oppCat `  Q )  X.c  Q ) ) )
42 yoneda.h . . . . 5  |-  H  =  (HomF
`  Q )
43 yoneda.t . . . . 5  |-  T  =  ( SetCat `  V )
4419unssad 3545 . . . . 5  |-  ( ph  ->  ran  ( Hom f  `  Q ) 
C_  V )
4542, 28, 43, 25, 18, 44hofcl 15081 . . . 4  |-  ( ph  ->  H  e.  ( ( (oppCat `  Q )  X.c  Q )  Func  T
) )
46 yonedalem21.f . . . . 5  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
47 yonedalem21.x . . . . 5  |-  ( ph  ->  X  e.  B )
48 opelxpi 4883 . . . . 5  |-  ( ( F  e.  ( O 
Func  S )  /\  X  e.  B )  ->  <. F ,  X >.  e.  ( ( O  Func  S )  X.  B ) )
4946, 47, 48syl2anc 661 . . . 4  |-  ( ph  -> 
<. F ,  X >.  e.  ( ( O  Func  S )  X.  B ) )
5012, 41, 45, 49cofu1 14806 . . 3  |-  ( ph  ->  ( ( 1st `  ( H  o.func  ( ( <. ( 1st `  Y ) , tpos  ( 2nd `  Y
) >.  o.func  ( Q  2ndF  O )
) ⟨,⟩F  ( Q  1stF  O ) ) ) ) `  <. F ,  X >. )  =  ( ( 1st `  H
) `  ( ( 1st `  ( ( <.
( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) ) `  <. F ,  X >. )
) )
515, 50syl5eq 2487 . 2  |-  ( ph  ->  ( F ( 1st `  Z ) X )  =  ( ( 1st `  H ) `  (
( 1st `  (
( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) ) `  <. F ,  X >. )
) )
52 eqid 2443 . . . . . 6  |-  ( Hom  `  ( Q  X.c  O ) )  =  ( Hom  `  ( Q  X.c  O ) )
5313, 12, 52, 38, 40, 49prf1 15022 . . . . 5  |-  ( ph  ->  ( ( 1st `  (
( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) ) `  <. F ,  X >. )  =  <. ( ( 1st `  ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ) `  <. F ,  X >. ) ,  ( ( 1st `  ( Q  1stF  O )
) `  <. F ,  X >. ) >. )
5412, 27, 37, 49cofu1 14806 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ) `  <. F ,  X >. )  =  ( ( 1st `  <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >. ) `  ( ( 1st `  ( Q  2ndF  O ) ) `  <. F ,  X >. ) ) )
55 fvex 5713 . . . . . . . . . 10  |-  ( 1st `  Y )  e.  _V
56 fvex 5713 . . . . . . . . . . 11  |-  ( 2nd `  Y )  e.  _V
5756tposex 6791 . . . . . . . . . 10  |- tpos  ( 2nd `  Y )  e.  _V
5855, 57op1st 6597 . . . . . . . . 9  |-  ( 1st `  <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >. )  =  ( 1st `  Y
)
5958a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 1st `  <. ( 1st `  Y ) , tpos  ( 2nd `  Y
) >. )  =  ( 1st `  Y ) )
606, 12, 52, 25, 17, 26, 492ndf1 15017 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( Q  2ndF  O ) ) `  <. F ,  X >. )  =  ( 2nd `  <. F ,  X >. )
)
61 op2ndg 6602 . . . . . . . . . 10  |-  ( ( F  e.  ( O 
Func  S )  /\  X  e.  B )  ->  ( 2nd `  <. F ,  X >. )  =  X )
6246, 47, 61syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  <. F ,  X >. )  =  X )
6360, 62eqtrd 2475 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( Q  2ndF  O ) ) `  <. F ,  X >. )  =  X )
6459, 63fveq12d 5709 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  <. ( 1st `  Y ) , tpos  ( 2nd `  Y
) >. ) `  (
( 1st `  ( Q  2ndF  O ) ) `  <. F ,  X >. ) )  =  ( ( 1st `  Y ) `
 X ) )
6554, 64eqtrd 2475 . . . . . 6  |-  ( ph  ->  ( ( 1st `  ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ) `  <. F ,  X >. )  =  ( ( 1st `  Y ) `  X
) )
666, 12, 52, 25, 17, 39, 491stf1 15014 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( Q  1stF  O ) ) `  <. F ,  X >. )  =  ( 1st `  <. F ,  X >. )
)
67 op1stg 6601 . . . . . . . 8  |-  ( ( F  e.  ( O 
Func  S )  /\  X  e.  B )  ->  ( 1st `  <. F ,  X >. )  =  F )
6846, 47, 67syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( 1st `  <. F ,  X >. )  =  F )
6966, 68eqtrd 2475 . . . . . 6  |-  ( ph  ->  ( ( 1st `  ( Q  1stF  O ) ) `  <. F ,  X >. )  =  F )
7065, 69opeq12d 4079 . . . . 5  |-  ( ph  -> 
<. ( ( 1st `  ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ) `  <. F ,  X >. ) ,  ( ( 1st `  ( Q  1stF  O )
) `  <. F ,  X >. ) >.  =  <. ( ( 1st `  Y
) `  X ) ,  F >. )
7153, 70eqtrd 2475 . . . 4  |-  ( ph  ->  ( ( 1st `  (
( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) ) `  <. F ,  X >. )  =  <. ( ( 1st `  Y ) `  X
) ,  F >. )
7271fveq2d 5707 . . 3  |-  ( ph  ->  ( ( 1st `  H
) `  ( ( 1st `  ( ( <.
( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) ) `  <. F ,  X >. )
)  =  ( ( 1st `  H ) `
 <. ( ( 1st `  Y ) `  X
) ,  F >. ) )
73 df-ov 6106 . . 3  |-  ( ( ( 1st `  Y
) `  X )
( 1st `  H
) F )  =  ( ( 1st `  H
) `  <. ( ( 1st `  Y ) `
 X ) ,  F >. )
7472, 73syl6eqr 2493 . 2  |-  ( ph  ->  ( ( 1st `  H
) `  ( ( 1st `  ( ( <.
( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) ) `  <. F ,  X >. )
)  =  ( ( ( 1st `  Y
) `  X )
( 1st `  H
) F ) )
75 eqid 2443 . . . 4  |-  ( O Nat 
S )  =  ( O Nat  S )
767, 75fuchom 14883 . . 3  |-  ( O Nat 
S )  =  ( Hom  `  Q )
7730, 10, 15, 47, 9, 22, 21, 31yon1cl 15085 . . 3  |-  ( ph  ->  ( ( 1st `  Y
) `  X )  e.  ( O  Func  S
) )
7842, 25, 8, 76, 77, 46hof1 15076 . 2  |-  ( ph  ->  ( ( ( 1st `  Y ) `  X
) ( 1st `  H
) F )  =  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )
7951, 74, 783eqtrd 2479 1  |-  ( ph  ->  ( F ( 1st `  Z ) X )  =  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   _Vcvv 2984    u. cun 3338    C_ wss 3340   <.cop 3895   class class class wbr 4304    X. cxp 4850   ran crn 4853   Rel wrel 4857   ` cfv 5430  (class class class)co 6103   1stc1st 6587   2ndc2nd 6588  tpos ctpos 6756   Basecbs 14186   Hom chom 14261   Catccat 14614   Idccid 14615   Hom f chomf 14616  oppCatcoppc 14662    Func cfunc 14776    o.func ccofu 14778   Nat cnat 14863   FuncCat cfuc 14864   SetCatcsetc 14955    X.c cxpc 14990    1stF c1stf 14991    2ndF c2ndf 14992   ⟨,⟩F cprf 14993   evalF cevlf 15031  HomFchof 15070  Yoncyon 15071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-tpos 6757  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-map 7228  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-fz 11450  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-hom 14274  df-cco 14275  df-cat 14618  df-cid 14619  df-homf 14620  df-comf 14621  df-oppc 14663  df-func 14780  df-cofu 14782  df-nat 14865  df-fuc 14866  df-setc 14956  df-xpc 14994  df-1stf 14995  df-2ndf 14996  df-prf 14997  df-curf 15036  df-hof 15072  df-yon 15073
This theorem is referenced by:  yonedalem3a  15096  yonedalem3b  15101  yonedainv  15103  yonffthlem  15104
  Copyright terms: Public domain W3C validator