MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmopn Structured version   Unicode version

Theorem xrsmopn 20411
Description: The metric on the extended reals generates a topology, but this does not match the order topology on  RR*; for example  { +oo } is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xrsxmet.1  |-  D  =  ( dist `  RR*s
)
xrsmopn.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
xrsmopn  |-  (ordTop `  <_  )  C_  J

Proof of Theorem xrsmopn
Dummy variables  x  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4142 . . . 4  |-  ( x  e.  (ordTop `  <_  )  ->  x  C_  U. (ordTop ` 
<_  ) )
2 letopuni 18833 . . . 4  |-  RR*  =  U. (ordTop `  <_  )
31, 2syl6sseqr 3424 . . 3  |-  ( x  e.  (ordTop `  <_  )  ->  x  C_  RR* )
4 eqid 2443 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
54rexmet 20390 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
65a1i 11 . . . . . . 7  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  (
( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR ) )
7 letop 18832 . . . . . . . . 9  |-  (ordTop `  <_  )  e.  Top
8 reex 9394 . . . . . . . . 9  |-  RR  e.  _V
9 elrestr 14388 . . . . . . . . 9  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  RR  e.  _V  /\  x  e.  (ordTop `  <_  ) )  -> 
( x  i^i  RR )  e.  ( (ordTop ` 
<_  )t  RR ) )
107, 8, 9mp3an12 1304 . . . . . . . 8  |-  ( x  e.  (ordTop `  <_  )  ->  ( x  i^i 
RR )  e.  ( (ordTop `  <_  )t  RR ) )
1110ad2antrr 725 . . . . . . 7  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  (
x  i^i  RR )  e.  ( (ordTop `  <_  )t  RR ) )
12 elin 3560 . . . . . . . . 9  |-  ( y  e.  ( x  i^i 
RR )  <->  ( y  e.  x  /\  y  e.  RR ) )
1312biimpri 206 . . . . . . . 8  |-  ( ( y  e.  x  /\  y  e.  RR )  ->  y  e.  ( x  i^i  RR ) )
1413adantll 713 . . . . . . 7  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  y  e.  ( x  i^i  RR ) )
15 eqid 2443 . . . . . . . . . 10  |-  ( (ordTop `  <_  )t  RR )  =  ( (ordTop `  <_  )t  RR )
1615xrtgioo 20405 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( (ordTop `  <_  )t  RR )
17 eqid 2443 . . . . . . . . . 10  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
184, 17tgioo 20395 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
1916, 18eqtr3i 2465 . . . . . . . 8  |-  ( (ordTop `  <_  )t  RR )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
2019mopni2 20090 . . . . . . 7  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  (
x  i^i  RR )  e.  ( (ordTop `  <_  )t  RR )  /\  y  e.  ( x  i^i  RR ) )  ->  E. r  e.  RR+  ( y (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR ) )
216, 11, 14, 20syl3anc 1218 . . . . . 6  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  E. r  e.  RR+  ( y (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR ) )
22 xrsxmet.1 . . . . . . . . . . . . 13  |-  D  =  ( dist `  RR*s
)
2322xrsxmet 20408 . . . . . . . . . . . 12  |-  D  e.  ( *Met `  RR* )
2423a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  D  e.  ( *Met `  RR* )
)
25 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  y  e.  RR )
26 ressxr 9448 . . . . . . . . . . . . 13  |-  RR  C_  RR*
27 dfss1 3576 . . . . . . . . . . . . 13  |-  ( RR  C_  RR*  <->  ( RR*  i^i  RR )  =  RR )
2826, 27mpbi 208 . . . . . . . . . . . 12  |-  ( RR*  i^i 
RR )  =  RR
2925, 28syl6eleqr 2534 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  y  e.  (
RR*  i^i  RR )
)
30 rpxr 11019 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e. 
RR* )
3130adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  r  e.  RR* )
3222xrsdsre 20409 . . . . . . . . . . . . 13  |-  ( D  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
3332eqcomi 2447 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( D  |`  ( RR  X.  RR ) )
3433blres 20028 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  RR* )  /\  y  e.  ( RR*  i^i  RR )  /\  r  e.  RR* )  -> 
( y ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( y (
ball `  D )
r )  i^i  RR ) )
3524, 29, 31, 34syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( y (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( y ( ball `  D
) r )  i^i 
RR ) )
3622xrsblre 20410 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  r  e.  RR* )  -> 
( y ( ball `  D ) r ) 
C_  RR )
3730, 36sylan2 474 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  r  e.  RR+ )  -> 
( y ( ball `  D ) r ) 
C_  RR )
3837adantll 713 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( y (
ball `  D )
r )  C_  RR )
39 df-ss 3363 . . . . . . . . . . 11  |-  ( ( y ( ball `  D
) r )  C_  RR 
<->  ( ( y (
ball `  D )
r )  i^i  RR )  =  ( y
( ball `  D )
r ) )
4038, 39sylib 196 . . . . . . . . . 10  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( ( y ( ball `  D
) r )  i^i 
RR )  =  ( y ( ball `  D
) r ) )
4135, 40eqtrd 2475 . . . . . . . . 9  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( y (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( y ( ball `  D
) r ) )
4241sseq1d 3404 . . . . . . . 8  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( ( y ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR )  <->  ( y
( ball `  D )
r )  C_  (
x  i^i  RR )
) )
43 inss1 3591 . . . . . . . . 9  |-  ( x  i^i  RR )  C_  x
44 sstr 3385 . . . . . . . . 9  |-  ( ( ( y ( ball `  D ) r ) 
C_  ( x  i^i 
RR )  /\  (
x  i^i  RR )  C_  x )  ->  (
y ( ball `  D
) r )  C_  x )
4543, 44mpan2 671 . . . . . . . 8  |-  ( ( y ( ball `  D
) r )  C_  ( x  i^i  RR )  ->  ( y (
ball `  D )
r )  C_  x
)
4642, 45syl6bi 228 . . . . . . 7  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( ( y ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR )  ->  (
y ( ball `  D
) r )  C_  x ) )
4746reximdva 2849 . . . . . 6  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  ( E. r  e.  RR+  (
y ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR )  ->  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) )
4821, 47mpd 15 . . . . 5  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
)
49 1rp 11016 . . . . . 6  |-  1  e.  RR+
5023a1i 11 . . . . . . . . 9  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  D  e.  ( *Met `  RR* )
)
513sselda 3377 . . . . . . . . . 10  |-  ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  ->  y  e.  RR* )
5251adantr 465 . . . . . . . . 9  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  y  e.  RR* )
53 rpxr 11019 . . . . . . . . . 10  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
5449, 53mp1i 12 . . . . . . . . 9  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  1  e.  RR* )
55 elbl 19985 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  RR* )  /\  y  e.  RR*  /\  1  e.  RR* )  ->  (
z  e.  ( y ( ball `  D
) 1 )  <->  ( z  e.  RR*  /\  ( y D z )  <  1 ) ) )
5650, 52, 54, 55syl3anc 1218 . . . . . . . 8  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  ( z  e.  ( y ( ball `  D
) 1 )  <->  ( z  e.  RR*  /\  ( y D z )  <  1 ) ) )
57 simp2 989 . . . . . . . . . 10  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  -.  y  e.  RR )
5823a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  D  e.  ( *Met `  RR* ) )
59513ad2ant1 1009 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  y  e.  RR* )
6059adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  y  e.  RR* )
61 simpl3l 1043 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  z  e.  RR* )
62 xmetcl 19928 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( *Met `  RR* )  /\  y  e.  RR*  /\  z  e.  RR* )  ->  (
y D z )  e.  RR* )
6358, 60, 61, 62syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y D z )  e.  RR* )
64 1red 9422 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  1  e.  RR )
65 xmetge0 19941 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( *Met `  RR* )  /\  y  e.  RR*  /\  z  e.  RR* )  ->  0  <_  ( y D z ) )
6658, 60, 61, 65syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  0  <_  ( y D z ) )
67 simpl3r 1044 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y D z )  <  1 )
6849, 53ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR*
69 xrltle 11147 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y D z )  e.  RR*  /\  1  e.  RR* )  ->  (
( y D z )  <  1  -> 
( y D z )  <_  1 ) )
7063, 68, 69sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
( y D z )  <  1  -> 
( y D z )  <_  1 ) )
7167, 70mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y D z )  <_  1 )
72 xrrege0 11167 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y D z )  e.  RR*  /\  1  e.  RR )  /\  ( 0  <_ 
( y D z )  /\  ( y D z )  <_ 
1 ) )  -> 
( y D z )  e.  RR )
7363, 64, 66, 71, 72syl22anc 1219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y D z )  e.  RR )
74 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  y  =/=  z )
7522xrsdsreclb 17882 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR*  /\  z  e.  RR*  /\  y  =/=  z )  ->  (
( y D z )  e.  RR  <->  ( y  e.  RR  /\  z  e.  RR ) ) )
7660, 61, 74, 75syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
( y D z )  e.  RR  <->  ( y  e.  RR  /\  z  e.  RR ) ) )
7773, 76mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y  e.  RR  /\  z  e.  RR )
)
7877simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  y  e.  RR )
7978ex 434 . . . . . . . . . . . 12  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  ( y  =/=  z  ->  y  e.  RR ) )
8079necon1bd 2703 . . . . . . . . . . 11  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  ( -.  y  e.  RR  ->  y  =  z ) )
81 simp1r 1013 . . . . . . . . . . . 12  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  y  e.  x
)
82 elequ1 1759 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  e.  x  <->  z  e.  x ) )
8381, 82syl5ibcom 220 . . . . . . . . . . 11  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  ( y  =  z  ->  z  e.  x ) )
8480, 83syld 44 . . . . . . . . . 10  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  ( -.  y  e.  RR  ->  z  e.  x ) )
8557, 84mpd 15 . . . . . . . . 9  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  z  e.  x
)
86853expia 1189 . . . . . . . 8  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  ( ( z  e. 
RR*  /\  ( y D z )  <  1 )  ->  z  e.  x ) )
8756, 86sylbid 215 . . . . . . 7  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  ( z  e.  ( y ( ball `  D
) 1 )  -> 
z  e.  x ) )
8887ssrdv 3383 . . . . . 6  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  ( y ( ball `  D ) 1 ) 
C_  x )
89 oveq2 6120 . . . . . . . 8  |-  ( r  =  1  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) 1 ) )
9089sseq1d 3404 . . . . . . 7  |-  ( r  =  1  ->  (
( y ( ball `  D ) r ) 
C_  x  <->  ( y
( ball `  D )
1 )  C_  x
) )
9190rspcev 3094 . . . . . 6  |-  ( ( 1  e.  RR+  /\  (
y ( ball `  D
) 1 )  C_  x )  ->  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
)
9249, 88, 91sylancr 663 . . . . 5  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  E. r  e.  RR+  ( y ( ball `  D ) r ) 
C_  x )
9348, 92pm2.61dan 789 . . . 4  |-  ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  ->  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
)
9493ralrimiva 2820 . . 3  |-  ( x  e.  (ordTop `  <_  )  ->  A. y  e.  x  E. r  e.  RR+  (
y ( ball `  D
) r )  C_  x )
95 xrsmopn.1 . . . . 5  |-  J  =  ( MetOpen `  D )
9695elmopn2 20042 . . . 4  |-  ( D  e.  ( *Met ` 
RR* )  ->  (
x  e.  J  <->  ( x  C_ 
RR*  /\  A. y  e.  x  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) ) )
9723, 96ax-mp 5 . . 3  |-  ( x  e.  J  <->  ( x  C_ 
RR*  /\  A. y  e.  x  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) )
983, 94, 97sylanbrc 664 . 2  |-  ( x  e.  (ordTop `  <_  )  ->  x  e.  J
)
9998ssriv 3381 1  |-  (ordTop `  <_  )  C_  J
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736   E.wrex 2737   _Vcvv 2993    i^i cin 3348    C_ wss 3349   U.cuni 4112   class class class wbr 4313    X. cxp 4859   ran crn 4862    |` cres 4863    o. ccom 4865   ` cfv 5439  (class class class)co 6112   RRcr 9302   0cc0 9303   1c1 9304   RR*cxr 9438    < clt 9439    <_ cle 9440    - cmin 9616   RR+crp 11012   (,)cioo 11321   abscabs 12744   distcds 14268   ↾t crest 14380   topGenctg 14397  ordTopcordt 14458   RR*scxrs 14459   *Metcxmt 17823   ballcbl 17825   MetOpencmopn 17828   Topctop 18520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-ec 7124  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fi 7682  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ioc 11326  df-ico 11327  df-icc 11328  df-fz 11459  df-seq 11828  df-exp 11887  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-plusg 14272  df-mulr 14273  df-tset 14278  df-ple 14279  df-ds 14281  df-rest 14382  df-topgen 14403  df-ordt 14460  df-xrs 14461  df-ps 15391  df-tsr 15392  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-top 18525  df-bases 18527  df-topon 18528
This theorem is referenced by:  xmetdcn  20437
  Copyright terms: Public domain W3C validator