Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrmulc1cn Structured version   Unicode version

Theorem xrmulc1cn 28351
Description: The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
xrmulc1cn.k  |-  J  =  (ordTop `  <_  )
xrmulc1cn.f  |-  F  =  ( x  e.  RR*  |->  ( x xe C ) )
xrmulc1cn.c  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
xrmulc1cn  |-  ( ph  ->  F  e.  ( J  Cn  J ) )
Distinct variable groups:    x, C    x, F    ph, x
Allowed substitution hint:    J( x)

Proof of Theorem xrmulc1cn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 letsr 16179 . . . 4  |-  <_  e.  TosetRel
21a1i 11 . . 3  |-  ( ph  ->  <_  e.  TosetRel  )
3 simpr 459 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR* )  ->  x  e.  RR* )
4 xrmulc1cn.c . . . . . . . . 9  |-  ( ph  ->  C  e.  RR+ )
54adantr 463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR* )  ->  C  e.  RR+ )
65rpxrd 11304 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR* )  ->  C  e.  RR* )
73, 6xmulcld 11546 . . . . . 6  |-  ( (
ph  /\  x  e.  RR* )  ->  ( x xe C )  e.  RR* )
87ralrimiva 2817 . . . . 5  |-  ( ph  ->  A. x  e.  RR*  ( x xe C )  e.  RR* )
9 simpr 459 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR* )  ->  y  e.  RR* )
104adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR* )  ->  C  e.  RR+ )
1110rpred 11303 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR* )  ->  C  e.  RR )
1210rpne0d 11308 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR* )  ->  C  =/=  0 )
13 xreceu 28056 . . . . . . . 8  |-  ( ( y  e.  RR*  /\  C  e.  RR  /\  C  =/=  0 )  ->  E! x  e.  RR*  ( C xe x )  =  y )
149, 11, 12, 13syl3anc 1230 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR* )  ->  E! x  e.  RR*  ( C xe x )  =  y )
15 eqcom 2411 . . . . . . . . 9  |-  ( y  =  ( x xe C )  <->  ( x xe C )  =  y )
16 simpr 459 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR* )  /\  x  e.  RR* )  ->  x  e.  RR* )
176adantlr 713 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR* )  /\  x  e.  RR* )  ->  C  e.  RR* )
18 xmulcom 11510 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  C  e.  RR* )  ->  (
x xe C )  =  ( C xe x ) )
1916, 17, 18syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR* )  /\  x  e.  RR* )  ->  (
x xe C )  =  ( C xe x ) )
2019eqeq1d 2404 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR* )  /\  x  e.  RR* )  ->  (
( x xe C )  =  y  <-> 
( C xe x )  =  y ) )
2115, 20syl5bb 257 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR* )  /\  x  e.  RR* )  ->  (
y  =  ( x xe C )  <-> 
( C xe x )  =  y ) )
2221reubidva 2990 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR* )  ->  ( E! x  e.  RR*  y  =  ( x xe C )  <->  E! x  e.  RR*  ( C xe x )  =  y ) )
2314, 22mpbird 232 . . . . . 6  |-  ( (
ph  /\  y  e.  RR* )  ->  E! x  e.  RR*  y  =  ( x xe C ) )
2423ralrimiva 2817 . . . . 5  |-  ( ph  ->  A. y  e.  RR*  E! x  e.  RR*  y  =  ( x xe C ) )
25 xrmulc1cn.f . . . . . 6  |-  F  =  ( x  e.  RR*  |->  ( x xe C ) )
2625f1ompt 6030 . . . . 5  |-  ( F : RR* -1-1-onto-> RR*  <->  ( A. x  e.  RR*  ( x xe C )  e. 
RR*  /\  A. y  e.  RR*  E! x  e. 
RR*  y  =  ( x xe C ) ) )
278, 24, 26sylanbrc 662 . . . 4  |-  ( ph  ->  F : RR* -1-1-onto-> RR* )
28 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR* )  /\  y  e.  RR* )  ->  x  e.  RR* )
29 simpr 459 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR* )  /\  y  e.  RR* )  ->  y  e.  RR* )
304ad2antrr 724 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR* )  /\  y  e.  RR* )  ->  C  e.  RR+ )
31 xlemul1 11534 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  C  e.  RR+ )  ->  ( x  <_  y  <->  ( x xe C )  <_  ( y xe C ) ) )
3228, 29, 30, 31syl3anc 1230 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR* )  /\  y  e.  RR* )  ->  (
x  <_  y  <->  ( x xe C )  <_  ( y xe C ) ) )
33 ovex 6305 . . . . . . . . 9  |-  ( x xe C )  e.  _V
3425fvmpt2 5940 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  (
x xe C )  e.  _V )  ->  ( F `  x
)  =  ( x xe C ) )
3528, 33, 34sylancl 660 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR* )  /\  y  e.  RR* )  ->  ( F `  x )  =  ( x xe C ) )
36 oveq1 6284 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x xe C )  =  ( y xe C ) )
37 ovex 6305 . . . . . . . . . 10  |-  ( y xe C )  e.  _V
3836, 25, 37fvmpt 5931 . . . . . . . . 9  |-  ( y  e.  RR*  ->  ( F `
 y )  =  ( y xe C ) )
3938adantl 464 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR* )  /\  y  e.  RR* )  ->  ( F `  y )  =  ( y xe C ) )
4035, 39breq12d 4407 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR* )  /\  y  e.  RR* )  ->  (
( F `  x
)  <_  ( F `  y )  <->  ( x xe C )  <_  ( y xe C ) ) )
4132, 40bitr4d 256 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR* )  /\  y  e.  RR* )  ->  (
x  <_  y  <->  ( F `  x )  <_  ( F `  y )
) )
4241ralrimiva 2817 . . . . 5  |-  ( (
ph  /\  x  e.  RR* )  ->  A. y  e.  RR*  ( x  <_ 
y  <->  ( F `  x )  <_  ( F `  y )
) )
4342ralrimiva 2817 . . . 4  |-  ( ph  ->  A. x  e.  RR*  A. y  e.  RR*  (
x  <_  y  <->  ( F `  x )  <_  ( F `  y )
) )
44 df-isom 5577 . . . 4  |-  ( F 
Isom  <_  ,  <_  ( RR* ,  RR* )  <->  ( F : RR*
-1-1-onto-> RR* 
/\  A. x  e.  RR*  A. y  e.  RR*  (
x  <_  y  <->  ( F `  x )  <_  ( F `  y )
) ) )
4527, 43, 44sylanbrc 662 . . 3  |-  ( ph  ->  F  Isom  <_  ,  <_  (
RR* ,  RR* ) )
46 ledm 16176 . . . 4  |-  RR*  =  dom  <_
4746, 46ordthmeolem 20592 . . 3  |-  ( (  <_  e.  TosetRel  /\  <_  e.  TosetRel 
/\  F  Isom  <_  ,  <_  ( RR* ,  RR* ) )  ->  F  e.  ( (ordTop `  <_  )  Cn  (ordTop `  <_  ) ) )
482, 2, 45, 47syl3anc 1230 . 2  |-  ( ph  ->  F  e.  ( (ordTop `  <_  )  Cn  (ordTop ` 
<_  ) ) )
49 xrmulc1cn.k . . 3  |-  J  =  (ordTop `  <_  )
5049, 49oveq12i 6289 . 2  |-  ( J  Cn  J )  =  ( (ordTop `  <_  )  Cn  (ordTop `  <_  ) )
5148, 50syl6eleqr 2501 1  |-  ( ph  ->  F  e.  ( J  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2753   E!wreu 2755   _Vcvv 3058   class class class wbr 4394    |-> cmpt 4452   -1-1-onto->wf1o 5567   ` cfv 5568    Isom wiso 5569  (class class class)co 6277   RRcr 9520   0cc0 9521   RR*cxr 9656    <_ cle 9658   RR+crp 11264   xecxmu 11369  ordTopcordt 15111    TosetRel ctsr 16151    Cn ccn 20016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fi 7904  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-rp 11265  df-xneg 11370  df-xmul 11372  df-topgen 15056  df-ordt 15113  df-ps 16152  df-tsr 16153  df-top 19689  df-bases 19691  df-topon 19692  df-cn 20019
This theorem is referenced by:  xrge0mulc1cn  28362
  Copyright terms: Public domain W3C validator