MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltletrd Structured version   Visualization version   Unicode version

Theorem xrltletrd 11458
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xrlttrd.1  |-  ( ph  ->  A  e.  RR* )
xrlttrd.2  |-  ( ph  ->  B  e.  RR* )
xrlttrd.3  |-  ( ph  ->  C  e.  RR* )
xrltletrd.4  |-  ( ph  ->  A  <  B )
xrltletrd.5  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
xrltletrd  |-  ( ph  ->  A  <  C )

Proof of Theorem xrltletrd
StepHypRef Expression
1 xrltletrd.4 . 2  |-  ( ph  ->  A  <  B )
2 xrltletrd.5 . 2  |-  ( ph  ->  B  <_  C )
3 xrlttrd.1 . . 3  |-  ( ph  ->  A  e.  RR* )
4 xrlttrd.2 . . 3  |-  ( ph  ->  B  e.  RR* )
5 xrlttrd.3 . . 3  |-  ( ph  ->  C  e.  RR* )
6 xrltletr 11454 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )
73, 4, 5, 6syl3anc 1268 . 2  |-  ( ph  ->  ( ( A  < 
B  /\  B  <_  C )  ->  A  <  C ) )
81, 2, 7mp2and 685 1  |-  ( ph  ->  A  <  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    e. wcel 1887   class class class wbr 4402   RR*cxr 9674    < clt 9675    <_ cle 9676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-pre-lttri 9613  ax-pre-lttrn 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681
This theorem is referenced by:  xlt2add  11546  xadddi2  11583  supxrre  11613  infxrre  11622  infmxrreOLD  11626  ixxlb  11657  ixxlbOLD  11658  elicore  11687  elico2  11698  elicc2  11699  caucvgrlem  13736  caucvgrlemOLD  13737  isnzr2hash  18488  xrsdsreclblem  19014  xblss2ps  21416  xblss2  21417  tgioo  21814  xrge0tsms  21852  xrhmeo  21974  ovoliunlem1  22455  ovoliun  22458  ioombl1lem2  22512  vitalilem4  22569  itg2monolem2  22709  itg2gt0  22718  dvferm1lem  22936  dvferm2lem  22938  lhop1lem  22965  pserdvlem2  23383  abelthlem3  23388  logtayl  23605  xrge0tsmsd  28548  esum2d  28914  relowlssretop  31766  itg2gt0cn  31997  areacirclem5  32036  xrge0nemnfd  37555  supxrgere  37556  supxrgelem  37560  infrpge  37574  icoopn  37626  limsupre  37721  limsupreOLD  37722  fourierdlem27  37996  fourierdlem87  38057  gsumge0cl  38213  sge0pr  38236  sge0ssre  38239  sge0xaddlem1  38275
  Copyright terms: Public domain W3C validator