MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltletr Structured version   Unicode version

Theorem xrltletr 11369
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltletr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )

Proof of Theorem xrltletr
StepHypRef Expression
1 xrleloe 11359 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C ) ) )
213adant1 1015 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C ) ) )
3 xrlttr 11355 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
43expcomd 438 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <  C  ->  ( A  <  B  ->  A  <  C ) ) )
5 breq2 4441 . . . . . . 7  |-  ( B  =  C  ->  ( A  <  B  <->  A  <  C ) )
65biimpd 207 . . . . . 6  |-  ( B  =  C  ->  ( A  <  B  ->  A  <  C ) )
76a1i 11 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  =  C  ->  ( A  <  B  ->  A  <  C ) ) )
84, 7jaod 380 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( B  <  C  \/  B  =  C
)  ->  ( A  <  B  ->  A  <  C ) ) )
92, 8sylbid 215 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  C  ->  ( A  <  B  ->  A  <  C ) ) )
109com23 78 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  B  ->  ( B  <_  C  ->  A  <  C ) ) )
1110impd 431 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   class class class wbr 4437   RR*cxr 9630    < clt 9631    <_ cle 9632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-pre-lttri 9569  ax-pre-lttrn 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-po 4790  df-so 4791  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637
This theorem is referenced by:  xrltletrd  11373  xrre2  11380  xrre3  11381  ge0gtmnf  11382  xrltmin  11392  supxrunb1  11520  iooss2  11574  ioc0  11585  iccssioo  11602  icossico  11603  icossioo  11624  ioossioo  11625  icoun  11653  ioojoin  11660  lecldbas  19593  mnfnei  19595  icopnfcld  21148  ovolicopnf  21808  voliunlem3  21835  volsup  21839  ioombl  21848  volivth  21889  itg2seq  22022  itg2monolem2  22031  dvfsumrlimge0  22304  dvfsumrlim2  22306  itgsubst  22323  abelth  22708  tanord1  22796  rlimcnp  23167  rlimcnp2  23168  dchrisum0lem2a  23574  pnt  23671  joiniooico  27457  esumfsup  27949  heicant  30024  itg2gt0cn  30045  asindmre  30077  ioounsn  31153  snunioo2  31480
  Copyright terms: Public domain W3C validator