MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrletri3 Structured version   Unicode version

Theorem xrletri3 11347
Description: Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
xrletri3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )

Proof of Theorem xrletri3
StepHypRef Expression
1 xrlttri3 11338 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
2 ancom 450 . . 3  |-  ( ( -.  B  <  A  /\  -.  A  <  B
)  <->  ( -.  A  <  B  /\  -.  B  <  A ) )
31, 2syl6bbr 263 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  B  <  A  /\  -.  A  <  B ) ) )
4 xrlenlt 9641 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 xrlenlt 9641 . . . 4  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
65ancoms 453 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
74, 6anbi12d 710 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <_  B  /\  B  <_  A )  <-> 
( -.  B  < 
A  /\  -.  A  <  B ) ) )
83, 7bitr4d 256 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   class class class wbr 4440   RR*cxr 9616    < clt 9617    <_ cle 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-pre-lttri 9555  ax-pre-lttrn 9556
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623
This theorem is referenced by:  xrmaxeq  11369  xrmineq  11370  xleadd1a  11434  xsubge0  11442  xlemul1a  11469  supxrre  11508  infmxrre  11516  ixxub  11539  ixxlb  11540  hashle00  12418  limsupval2  13252  pc2dvds  14250  pc11  14251  pcadd2  14257  letsr  15703  psmetsym  20542  isxmet2d  20558  xmetsym  20578  xmetgt0  20589  prdsxmetlem  20599  imasdsf1olem  20604  xblss2  20633  nmo0  20970  nmoid  20977  xrsxmet  21042  ovolssnul  21626  ovolctb  21629  ovolunnul  21639  ovoliunnul  21646  ovolicc  21662  ovolre  21664  voliunlem3  21690  volsup  21694  uniioovol  21716  uniiccvol  21717  vitalilem5  21749  ismbfd  21775  itg2itg1  21871  itg2seq  21877  itg2eqa  21880  itg2mulc  21882  itg2split  21884  itg2mono  21888  deg1add  22232  deg1mul2  22243  deg1tm  22247  xeqlelt  27241  xrstos  27315  xrge0omnd  27349  metideq  27494  metider  27495  measle0  27805  ovoliunnfl  29620  volsupnfl  29623  iccintsng  31082
  Copyright terms: Public domain W3C validator