MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrletr Structured version   Unicode version

Theorem xrletr 11350
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrletr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem xrletr
StepHypRef Expression
1 xrleloe 11339 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C ) ) )
213adant1 1009 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C ) ) )
32adantr 465 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C ) ) )
4 xrlelttr 11348 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
5 xrltle 11344 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  C  ->  A  <_  C ) )
653adant2 1010 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  C  ->  A  <_  C ) )
74, 6syld 44 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <_  C
) )
87expdimp 437 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  <  C  ->  A  <_  C ) )
9 breq2 4444 . . . . . 6  |-  ( B  =  C  ->  ( A  <_  B  <->  A  <_  C ) )
109biimpcd 224 . . . . 5  |-  ( A  <_  B  ->  ( B  =  C  ->  A  <_  C ) )
1110adantl 466 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  =  C  ->  A  <_  C ) )
128, 11jaod 380 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  (
( B  <  C  \/  B  =  C
)  ->  A  <_  C ) )
133, 12sylbid 215 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  <_  C  ->  A  <_  C ) )
1413expimpd 603 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   class class class wbr 4440   RR*cxr 9616    < clt 9617    <_ cle 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-pre-lttri 9555  ax-pre-lttrn 9556
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623
This theorem is referenced by:  xrletrd  11354  xrmaxle  11373  xrlemin  11374  xralrple  11393  xle2add  11440  icc0  11566  iccss  11581  icossico  11583  iccss2  11584  iccssico  11585  icoun  11633  snunico  11636  snunioc  11637  limsupgord  13244  limsupgre  13253  limsupbnd1  13254  limsupbnd2  13255  ramtlecl  14366  letsr  15703  leordtval2  19472  lecldbas  19479  imasdsf1olem  20604  stdbdxmet  20746  ovolmge0  21616  itg2le  21874  itg2seq  21877  plypf1  22337  pntleml  23517  nmopge0  26356  nmfnge0  26372  xrstos  27179  xrge0omnd  27213  tan2h  29475  mblfinlem3  29481  mblfinlem4  29482  itg2addnclem  29494  elicc3  29563
  Copyright terms: Public domain W3C validator