MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrletr Structured version   Unicode version

Theorem xrletr 11124
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrletr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem xrletr
StepHypRef Expression
1 xrleloe 11113 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C ) ) )
213adant1 1006 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C ) ) )
32adantr 465 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C ) ) )
4 xrlelttr 11122 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
5 xrltle 11118 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  C  ->  A  <_  C ) )
653adant2 1007 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  C  ->  A  <_  C ) )
74, 6syld 44 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <_  C
) )
87expdimp 437 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  <  C  ->  A  <_  C ) )
9 breq2 4291 . . . . . 6  |-  ( B  =  C  ->  ( A  <_  B  <->  A  <_  C ) )
109biimpcd 224 . . . . 5  |-  ( A  <_  B  ->  ( B  =  C  ->  A  <_  C ) )
1110adantl 466 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  =  C  ->  A  <_  C ) )
128, 11jaod 380 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  (
( B  <  C  \/  B  =  C
)  ->  A  <_  C ) )
133, 12sylbid 215 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  <_  C  ->  A  <_  C ) )
1413expimpd 603 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4287   RR*cxr 9409    < clt 9410    <_ cle 9411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-pre-lttri 9348  ax-pre-lttrn 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416
This theorem is referenced by:  xrletrd  11128  xrmaxle  11147  xrlemin  11148  xralrple  11167  xle2add  11214  icc0  11340  iccss  11355  icossico  11357  iccss2  11358  iccssico  11359  icoun  11401  snunico  11404  snunioc  11405  limsupgord  12942  limsupgre  12951  limsupbnd1  12952  limsupbnd2  12953  ramtlecl  14053  letsr  15389  leordtval2  18791  lecldbas  18798  imasdsf1olem  19923  stdbdxmet  20065  ovolmge0  20935  itg2le  21192  itg2seq  21195  plypf1  21655  pntleml  22835  nmopge0  25266  nmfnge0  25282  xrstos  26091  xrge0omnd  26125  tan2h  28377  mblfinlem3  28383  mblfinlem4  28384  itg2addnclem  28396  elicc3  28465
  Copyright terms: Public domain W3C validator