MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlelttrd Structured version   Unicode version

Theorem xrlelttrd 11364
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xrlttrd.1  |-  ( ph  ->  A  e.  RR* )
xrlttrd.2  |-  ( ph  ->  B  e.  RR* )
xrlttrd.3  |-  ( ph  ->  C  e.  RR* )
xrlelttrd.4  |-  ( ph  ->  A  <_  B )
xrlelttrd.5  |-  ( ph  ->  B  <  C )
Assertion
Ref Expression
xrlelttrd  |-  ( ph  ->  A  <  C )

Proof of Theorem xrlelttrd
StepHypRef Expression
1 xrlelttrd.4 . 2  |-  ( ph  ->  A  <_  B )
2 xrlelttrd.5 . 2  |-  ( ph  ->  B  <  C )
3 xrlttrd.1 . . 3  |-  ( ph  ->  A  e.  RR* )
4 xrlttrd.2 . . 3  |-  ( ph  ->  B  e.  RR* )
5 xrlttrd.3 . . 3  |-  ( ph  ->  C  e.  RR* )
6 xrlelttr 11360 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
73, 4, 5, 6syl3anc 1228 . 2  |-  ( ph  ->  ( ( A  <_  B  /\  B  <  C
)  ->  A  <  C ) )
81, 2, 7mp2and 679 1  |-  ( ph  ->  A  <  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   class class class wbr 4447   RR*cxr 9628    < clt 9629    <_ cle 9630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-pre-lttri 9567  ax-pre-lttrn 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635
This theorem is referenced by:  xlt2add  11453  ixxub  11551  elioc2  11588  elicc2  11590  limsupgre  13270  xrsdsreclblem  18272  mnfnei  19528  blgt0  20729  xblss2ps  20731  xblss2  20732  metustexhalfOLD  20893  metustexhalf  20894  tgioo  21128  blcvx  21130  xrge0tsms  21166  metdcnlem  21168  metdscnlem  21186  ioombl  21802  uniioombllem1  21817  dvferm2lem  22214  dvlip2  22223  ftc1a  22265  coe1mul3  22327  ply1remlem  22390  pserulm  22643  isblo3i  25489  xrge0infss  27345  iocinioc2  27355  xrge0tsmsd  27535  sibfinima  28032  heicant  29902  itg2gt0cn  29923  ftc1anclem7  29949  ftc1anc  29951  idomrootle  30984  eliocre  31338  iocopn  31351  limsupre  31410  fourierdlem27  31661
  Copyright terms: Public domain W3C validator