MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlelttrd Structured version   Unicode version

Theorem xrlelttrd 11457
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xrlttrd.1  |-  ( ph  ->  A  e.  RR* )
xrlttrd.2  |-  ( ph  ->  B  e.  RR* )
xrlttrd.3  |-  ( ph  ->  C  e.  RR* )
xrlelttrd.4  |-  ( ph  ->  A  <_  B )
xrlelttrd.5  |-  ( ph  ->  B  <  C )
Assertion
Ref Expression
xrlelttrd  |-  ( ph  ->  A  <  C )

Proof of Theorem xrlelttrd
StepHypRef Expression
1 xrlelttrd.4 . 2  |-  ( ph  ->  A  <_  B )
2 xrlelttrd.5 . 2  |-  ( ph  ->  B  <  C )
3 xrlttrd.1 . . 3  |-  ( ph  ->  A  e.  RR* )
4 xrlttrd.2 . . 3  |-  ( ph  ->  B  e.  RR* )
5 xrlttrd.3 . . 3  |-  ( ph  ->  C  e.  RR* )
6 xrlelttr 11453 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
73, 4, 5, 6syl3anc 1264 . 2  |-  ( ph  ->  ( ( A  <_  B  /\  B  <  C
)  ->  A  <  C ) )
81, 2, 7mp2and 683 1  |-  ( ph  ->  A  <  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    e. wcel 1870   class class class wbr 4426   RR*cxr 9673    < clt 9674    <_ cle 9675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-pre-lttri 9612  ax-pre-lttrn 9613
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680
This theorem is referenced by:  xlt2add  11546  ixxub  11656  elioc2  11697  elicc2  11699  limsupgre  13520  limsupgreOLD  13521  xrsdsreclblem  18949  mnfnei  20168  blgt0  21345  xblss2ps  21347  xblss2  21348  metustexhalf  21502  tgioo  21725  blcvx  21727  xrge0tsms  21763  metdcnlem  21765  metdscnlem  21783  ioombl  22395  uniioombllem1  22415  dvferm2lem  22815  dvlip2  22824  ftc1a  22866  coe1mul3  22925  ply1remlem  22988  pserulm  23242  isblo3i  26287  xrge0infss  28181  iocinioc2  28197  xrge0tsmsd  28387  sibfinima  29000  heicant  31679  itg2gt0cn  31701  ftc1anclem7  31727  ftc1anc  31729  idomrootle  35768  supxrgelem  37169  supxrge  37170  eliocre  37194  iocopn  37206  limsupre  37293  limsupreOLD  37294  fourierdlem27  37565  omessre  37840  omeiunltfirp  37849
  Copyright terms: Public domain W3C validator