MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlelttr Structured version   Unicode version

Theorem xrlelttr 11355
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem xrlelttr
StepHypRef Expression
1 xrleloe 11346 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B ) ) )
213adant3 1016 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B ) ) )
3 xrlttr 11342 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
43expd 436 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  B  ->  ( B  <  C  ->  A  <  C ) ) )
5 breq1 4450 . . . . . 6  |-  ( A  =  B  ->  ( A  <  C  <->  B  <  C ) )
65biimprd 223 . . . . 5  |-  ( A  =  B  ->  ( B  <  C  ->  A  <  C ) )
76a1i 11 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  =  B  ->  ( B  <  C  ->  A  <  C ) ) )
84, 7jaod 380 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  \/  A  =  B
)  ->  ( B  <  C  ->  A  <  C ) ) )
92, 8sylbid 215 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <_  B  ->  ( B  <  C  ->  A  <  C ) ) )
109impd 431 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447   RR*cxr 9623    < clt 9624    <_ cle 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-pre-lttri 9562  ax-pre-lttrn 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630
This theorem is referenced by:  xrletr  11357  xrlelttrd  11359  xrre  11366  xrre2  11367  xrmaxlt  11378  supxrun  11503  iooss1  11560  ico0  11571  iccssioo  11589  iccssico  11592  iocssioo  11610  ioossioo  11612  snunioo  11642  leordtval2  19479  lecldbas  19486  pnfnei  19487  bldisj  20636  xbln0  20652  prdsbl  20729  blsscls2  20742  metcnpi3  20784  iocmnfcld  21011  iscau3  21452  ismbf3d  21796  itgsubst  22185  mdegaddle  22209  mdegmullem  22213  ply1divmo  22271  psercnlem2  22553  ftc1cnnclem  29665  ftc1anclem6  29672  ftc1anclem7  29673  ftc1anclem8  29674  ftc1anc  29675  ftc2nc  29676  asindmre  29679  snunioo1  31116
  Copyright terms: Public domain W3C validator