MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrhmeo Structured version   Unicode version

Theorem xrhmeo 20477
Description: The bijection from  [ -u
1 ,  1 ] to the extended reals is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
xrhmeo.f  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  1 , +oo , 
( x  /  (
1  -  x ) ) ) )
xrhmeo.g  |-  G  =  ( y  e.  (
-u 1 [,] 1
)  |->  if ( 0  <_  y ,  ( F `  y ) ,  -e ( F `  -u y
) ) )
xrhmeo.j  |-  J  =  ( TopOpen ` fld )
xrhmeo.k  |-  K  =  (ordTop `  <_  )
Assertion
Ref Expression
xrhmeo  |-  ( G 
Isom  <  ,  <  (
( -u 1 [,] 1
) ,  RR* )  /\  G  e.  (
( Jt  ( -u 1 [,] 1 ) ) Homeo (ordTop `  <_  ) ) )
Distinct variable groups:    x, y    y, F    x, J, y
Allowed substitution hints:    F( x)    G( x, y)    K( x, y)

Proof of Theorem xrhmeo
Dummy variables  w  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 11374 . . . 4  |-  ( -u
1 [,] 1 ) 
C_  RR*
2 xrltso 11114 . . . 4  |-  <  Or  RR*
3 soss 4655 . . . 4  |-  ( (
-u 1 [,] 1
)  C_  RR*  ->  (  <  Or  RR*  ->  <  Or  ( -u 1 [,] 1
) ) )
41, 2, 3mp2 9 . . 3  |-  <  Or  ( -u 1 [,] 1
)
5 sopo 4654 . . . 4  |-  (  < 
Or  RR*  ->  <  Po  RR* )
62, 5ax-mp 5 . . 3  |-  <  Po  RR*
7 xrhmeo.g . . . . 5  |-  G  =  ( y  e.  (
-u 1 [,] 1
)  |->  if ( 0  <_  y ,  ( F `  y ) ,  -e ( F `  -u y
) ) )
8 iccssxr 11374 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
9 neg1rr 10422 . . . . . . . . . . . 12  |-  -u 1  e.  RR
10 1re 9381 . . . . . . . . . . . 12  |-  1  e.  RR
119, 10elicc2i 11357 . . . . . . . . . . 11  |-  ( y  e.  ( -u 1 [,] 1 )  <->  ( y  e.  RR  /\  -u 1  <_  y  /\  y  <_ 
1 ) )
1211simp1bi 998 . . . . . . . . . 10  |-  ( y  e.  ( -u 1 [,] 1 )  ->  y  e.  RR )
1312adantr 462 . . . . . . . . 9  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  0  <_  y
)  ->  y  e.  RR )
14 simpr 458 . . . . . . . . 9  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  0  <_  y
)  ->  0  <_  y )
1511simp3bi 1000 . . . . . . . . . 10  |-  ( y  e.  ( -u 1 [,] 1 )  ->  y  <_  1 )
1615adantr 462 . . . . . . . . 9  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  0  <_  y
)  ->  y  <_  1 )
17 0re 9382 . . . . . . . . . 10  |-  0  e.  RR
1817, 10elicc2i 11357 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] 1 )  <->  ( y  e.  RR  /\  0  <_ 
y  /\  y  <_  1 ) )
1913, 14, 16, 18syl3anbrc 1167 . . . . . . . 8  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  0  <_  y
)  ->  y  e.  ( 0 [,] 1
) )
20 xrhmeo.f . . . . . . . . . . . 12  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  1 , +oo , 
( x  /  (
1  -  x ) ) ) )
2120iccpnfcnv 20475 . . . . . . . . . . 11  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  /\  `' F  =  ( v  e.  ( 0 [,] +oo )  |->  if ( v  = +oo ,  1 ,  ( v  /  (
1  +  v ) ) ) ) )
2221simpli 455 . . . . . . . . . 10  |-  F :
( 0 [,] 1
)
-1-1-onto-> ( 0 [,] +oo )
23 f1of 5638 . . . . . . . . . 10  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  ->  F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) )
2422, 23ax-mp 5 . . . . . . . . 9  |-  F :
( 0 [,] 1
) --> ( 0 [,] +oo )
2524ffvelrni 5839 . . . . . . . 8  |-  ( y  e.  ( 0 [,] 1 )  ->  ( F `  y )  e.  ( 0 [,] +oo ) )
2619, 25syl 16 . . . . . . 7  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  0  <_  y
)  ->  ( F `  y )  e.  ( 0 [,] +oo )
)
278, 26sseldi 3351 . . . . . 6  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  0  <_  y
)  ->  ( F `  y )  e.  RR* )
2812adantr 462 . . . . . . . . . . 11  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  y  e.  RR )
2928renegcld 9771 . . . . . . . . . 10  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  -u y  e.  RR )
30 letric 9471 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  y  e.  RR )  ->  ( 0  <_  y  \/  y  <_  0 ) )
3117, 12, 30sylancr 658 . . . . . . . . . . . 12  |-  ( y  e.  ( -u 1 [,] 1 )  ->  (
0  <_  y  \/  y  <_  0 ) )
3231orcanai 899 . . . . . . . . . . 11  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  y  <_  0 )
3328le0neg1d 9907 . . . . . . . . . . 11  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  (
y  <_  0  <->  0  <_  -u y ) )
3432, 33mpbid 210 . . . . . . . . . 10  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  0  <_ 
-u y )
3511simp2bi 999 . . . . . . . . . . . 12  |-  ( y  e.  ( -u 1 [,] 1 )  ->  -u 1  <_  y )
3635adantr 462 . . . . . . . . . . 11  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  -u 1  <_  y )
37 lenegcon1 9839 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  y  e.  RR )  ->  ( -u 1  <_ 
y  <->  -u y  <_  1
) )
3810, 28, 37sylancr 658 . . . . . . . . . . 11  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  ( -u 1  <_  y  <->  -u y  <_ 
1 ) )
3936, 38mpbid 210 . . . . . . . . . 10  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  -u y  <_  1 )
4017, 10elicc2i 11357 . . . . . . . . . 10  |-  ( -u y  e.  ( 0 [,] 1 )  <->  ( -u y  e.  RR  /\  0  <_  -u y  /\  -u y  <_  1 ) )
4129, 34, 39, 40syl3anbrc 1167 . . . . . . . . 9  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  -u y  e.  ( 0 [,] 1
) )
4224ffvelrni 5839 . . . . . . . . 9  |-  ( -u y  e.  ( 0 [,] 1 )  -> 
( F `  -u y
)  e.  ( 0 [,] +oo ) )
4341, 42syl 16 . . . . . . . 8  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  ( F `  -u y )  e.  ( 0 [,] +oo ) )
448, 43sseldi 3351 . . . . . . 7  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  ( F `  -u y )  e.  RR* )
4544xnegcld 11259 . . . . . 6  |-  ( ( y  e.  ( -u
1 [,] 1 )  /\  -.  0  <_ 
y )  ->  -e
( F `  -u y
)  e.  RR* )
4627, 45ifclda 3818 . . . . 5  |-  ( y  e.  ( -u 1 [,] 1 )  ->  if ( 0  <_  y ,  ( F `  y ) ,  -e ( F `  -u y ) )  e. 
RR* )
477, 46fmpti 5863 . . . 4  |-  G :
( -u 1 [,] 1
) --> RR*
48 frn 5562 . . . . . 6  |-  ( G : ( -u 1 [,] 1 ) --> RR*  ->  ran 
G  C_  RR* )
4947, 48ax-mp 5 . . . . 5  |-  ran  G  C_ 
RR*
50 ssabral 3420 . . . . . . 7  |-  ( RR*  C_ 
{ z  |  E. y  e.  ( -u 1 [,] 1 ) z  =  if ( 0  <_ 
y ,  ( F `
 y ) , 
-e ( F `
 -u y ) ) }  <->  A. z  e.  RR*  E. y  e.  ( -u
1 [,] 1 ) z  =  if ( 0  <_  y , 
( F `  y
) ,  -e
( F `  -u y
) ) )
51 0le1 9859 . . . . . . . . . . . . 13  |-  0  <_  1
52 le0neg2 9844 . . . . . . . . . . . . . 14  |-  ( 1  e.  RR  ->  (
0  <_  1  <->  -u 1  <_ 
0 ) )
5310, 52ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0  <_  1  <->  -u 1  <_ 
0 )
5451, 53mpbi 208 . . . . . . . . . . . 12  |-  -u 1  <_  0
55 1le1 9960 . . . . . . . . . . . 12  |-  1  <_  1
56 iccss 11359 . . . . . . . . . . . 12  |-  ( ( ( -u 1  e.  RR  /\  1  e.  RR )  /\  ( -u 1  <_  0  /\  1  <_  1 ) )  ->  ( 0 [,] 1 )  C_  ( -u 1 [,] 1 ) )
579, 10, 54, 55, 56mp4an 668 . . . . . . . . . . 11  |-  ( 0 [,] 1 )  C_  ( -u 1 [,] 1
)
58 elxrge0 11390 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] +oo )  <->  ( z  e. 
RR*  /\  0  <_  z ) )
59 f1ocnv 5650 . . . . . . . . . . . . . 14  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  ->  `' F :
( 0 [,] +oo )
-1-1-onto-> ( 0 [,] 1
) )
60 f1of 5638 . . . . . . . . . . . . . 14  |-  ( `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 )  ->  `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) )
6122, 59, 60mp2b 10 . . . . . . . . . . . . 13  |-  `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 )
6261ffvelrni 5839 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] +oo )  ->  ( `' F `  z )  e.  ( 0 [,] 1 ) )
6358, 62sylbir 213 . . . . . . . . . . 11  |-  ( ( z  e.  RR*  /\  0  <_  z )  ->  ( `' F `  z )  e.  ( 0 [,] 1 ) )
6457, 63sseldi 3351 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  0  <_  z )  ->  ( `' F `  z )  e.  ( -u 1 [,] 1 ) )
6517, 10elicc2i 11357 . . . . . . . . . . . 12  |-  ( ( `' F `  z )  e.  ( 0 [,] 1 )  <->  ( ( `' F `  z )  e.  RR  /\  0  <_  ( `' F `  z )  /\  ( `' F `  z )  <_  1 ) )
6665simp2bi 999 . . . . . . . . . . 11  |-  ( ( `' F `  z )  e.  ( 0 [,] 1 )  ->  0  <_  ( `' F `  z ) )
6763, 66syl 16 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  0  <_  z )  ->  0  <_  ( `' F `  z ) )
6858biimpri 206 . . . . . . . . . . . 12  |-  ( ( z  e.  RR*  /\  0  <_  z )  ->  z  e.  ( 0 [,] +oo ) )
69 f1ocnvfv2 5981 . . . . . . . . . . . 12  |-  ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  /\  z  e.  ( 0 [,] +oo ) )  ->  ( F `  ( `' F `  z ) )  =  z )
7022, 68, 69sylancr 658 . . . . . . . . . . 11  |-  ( ( z  e.  RR*  /\  0  <_  z )  ->  ( F `  ( `' F `  z )
)  =  z )
7170eqcomd 2446 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  0  <_  z )  ->  z  =  ( F `  ( `' F `  z ) ) )
72 breq2 4293 . . . . . . . . . . . 12  |-  ( y  =  ( `' F `  z )  ->  (
0  <_  y  <->  0  <_  ( `' F `  z ) ) )
73 fveq2 5688 . . . . . . . . . . . . 13  |-  ( y  =  ( `' F `  z )  ->  ( F `  y )  =  ( F `  ( `' F `  z ) ) )
7473eqeq2d 2452 . . . . . . . . . . . 12  |-  ( y  =  ( `' F `  z )  ->  (
z  =  ( F `
 y )  <->  z  =  ( F `  ( `' F `  z ) ) ) )
7572, 74anbi12d 705 . . . . . . . . . . 11  |-  ( y  =  ( `' F `  z )  ->  (
( 0  <_  y  /\  z  =  ( F `  y )
)  <->  ( 0  <_ 
( `' F `  z )  /\  z  =  ( F `  ( `' F `  z ) ) ) ) )
7675rspcev 3070 . . . . . . . . . 10  |-  ( ( ( `' F `  z )  e.  (
-u 1 [,] 1
)  /\  ( 0  <_  ( `' F `  z )  /\  z  =  ( F `  ( `' F `  z ) ) ) )  ->  E. y  e.  ( -u 1 [,] 1 ) ( 0  <_  y  /\  z  =  ( F `  y )
) )
7764, 67, 71, 76syl12anc 1211 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\  0  <_  z )  ->  E. y  e.  ( -u 1 [,] 1 ) ( 0  <_  y  /\  z  =  ( F `  y ) ) )
78 iftrue 3794 . . . . . . . . . . . 12  |-  ( 0  <_  y  ->  if ( 0  <_  y ,  ( F `  y ) ,  -e ( F `  -u y ) )  =  ( F `  y
) )
7978eqeq2d 2452 . . . . . . . . . . 11  |-  ( 0  <_  y  ->  (
z  =  if ( 0  <_  y , 
( F `  y
) ,  -e
( F `  -u y
) )  <->  z  =  ( F `  y ) ) )
8079biimpar 482 . . . . . . . . . 10  |-  ( ( 0  <_  y  /\  z  =  ( F `  y ) )  -> 
z  =  if ( 0  <_  y , 
( F `  y
) ,  -e
( F `  -u y
) ) )
8180reximi 2821 . . . . . . . . 9  |-  ( E. y  e.  ( -u
1 [,] 1 ) ( 0  <_  y  /\  z  =  ( F `  y )
)  ->  E. y  e.  ( -u 1 [,] 1 ) z  =  if ( 0  <_ 
y ,  ( F `
 y ) , 
-e ( F `
 -u y ) ) )
8277, 81syl 16 . . . . . . . 8  |-  ( ( z  e.  RR*  /\  0  <_  z )  ->  E. y  e.  ( -u 1 [,] 1 ) z  =  if ( 0  <_ 
y ,  ( F `
 y ) , 
-e ( F `
 -u y ) ) )
83 xnegcl 11179 . . . . . . . . . . . . . . . 16  |-  ( z  e.  RR*  ->  -e
z  e.  RR* )
8483adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -e z  e.  RR* )
85 0xr 9426 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR*
86 xrletri 11124 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR*  /\  z  e.  RR* )  ->  (
0  <_  z  \/  z  <_  0 ) )
8785, 86mpan 665 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR*  ->  ( 0  <_  z  \/  z  <_  0 ) )
8887ord 377 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  RR*  ->  ( -.  0  <_  z  ->  z  <_  0 ) )
89 xle0neg1 11187 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  RR*  ->  ( z  <_  0  <->  0  <_  -e z ) )
9088, 89sylibd 214 . . . . . . . . . . . . . . . 16  |-  ( z  e.  RR*  ->  ( -.  0  <_  z  ->  0  <_  -e z ) )
9190imp 429 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
0  <_  -e z )
92 elxrge0 11390 . . . . . . . . . . . . . . 15  |-  (  -e z  e.  ( 0 [,] +oo )  <->  ( 
-e z  e. 
RR*  /\  0  <_  -e z ) )
9384, 91, 92sylanbrc 659 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -e z  e.  ( 0 [,] +oo )
)
9461ffvelrni 5839 . . . . . . . . . . . . . 14  |-  (  -e z  e.  ( 0 [,] +oo )  ->  ( `' F `  -e z )  e.  ( 0 [,] 1
) )
9593, 94syl 16 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( `' F `  -e z )  e.  ( 0 [,] 1
) )
9657, 95sseldi 3351 . . . . . . . . . . . 12  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( `' F `  -e z )  e.  ( -u 1 [,] 1 ) )
97 iccssre 11373 . . . . . . . . . . . . . . 15  |-  ( (
-u 1  e.  RR  /\  1  e.  RR )  ->  ( -u 1 [,] 1 )  C_  RR )
989, 10, 97mp2an 667 . . . . . . . . . . . . . 14  |-  ( -u
1 [,] 1 ) 
C_  RR
9998, 96sseldi 3351 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( `' F `  -e z )  e.  RR )
100 iccneg 11402 . . . . . . . . . . . . . 14  |-  ( (
-u 1  e.  RR  /\  1  e.  RR  /\  ( `' F `  -e
z )  e.  RR )  ->  ( ( `' F `  -e
z )  e.  (
-u 1 [,] 1
)  <->  -u ( `' F `  -e z )  e.  ( -u 1 [,] -u -u 1 ) ) )
1019, 10, 100mp3an12 1299 . . . . . . . . . . . . 13  |-  ( ( `' F `  -e
z )  e.  RR  ->  ( ( `' F `  -e z )  e.  ( -u 1 [,] 1 )  <->  -u ( `' F `  -e
z )  e.  (
-u 1 [,] -u -u 1
) ) )
10299, 101syl 16 . . . . . . . . . . . 12  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( ( `' F `  -e z )  e.  ( -u 1 [,] 1 )  <->  -u ( `' F `  -e
z )  e.  (
-u 1 [,] -u -u 1
) ) )
10396, 102mpbid 210 . . . . . . . . . . 11  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -u ( `' F `  -e z )  e.  ( -u 1 [,] -u -u 1 ) )
104 negneg1e1 10425 . . . . . . . . . . . 12  |-  -u -u 1  =  1
105104oveq2i 6101 . . . . . . . . . . 11  |-  ( -u
1 [,] -u -u 1
)  =  ( -u
1 [,] 1 )
106103, 105syl6eleq 2531 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -u ( `' F `  -e z )  e.  ( -u 1 [,] 1 ) )
107 xle0neg2 11188 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR*  ->  ( 0  <_  z  <->  -e z  <_  0 ) )
108107notbid 294 . . . . . . . . . . . . . 14  |-  ( z  e.  RR*  ->  ( -.  0  <_  z  <->  -.  -e
z  <_  0 ) )
109108biimpa 481 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -.  -e z  <_ 
0 )
110 f1ocnvfv2 5981 . . . . . . . . . . . . . . 15  |-  ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  /\  -e z  e.  ( 0 [,] +oo )
)  ->  ( F `  ( `' F `  -e z ) )  =  -e z )
11122, 93, 110sylancr 658 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( F `  ( `' F `  -e
z ) )  = 
-e z )
112 0elunit 11399 . . . . . . . . . . . . . . . 16  |-  0  e.  ( 0 [,] 1
)
113 ax-1ne0 9347 . . . . . . . . . . . . . . . . . . . . 21  |-  1  =/=  0
114 neeq2 2615 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  (
1  =/=  x  <->  1  =/=  0 ) )
115113, 114mpbiri 233 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  1  =/=  x )
116115necomd 2693 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  0  ->  x  =/=  1 )
117 ifnefalse 3798 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =/=  1  ->  if ( x  =  1 , +oo ,  ( x  /  ( 1  -  x ) ) )  =  ( x  / 
( 1  -  x
) ) )
118116, 117syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  if ( x  =  1 , +oo ,  ( x  /  ( 1  -  x ) ) )  =  ( x  / 
( 1  -  x
) ) )
119 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  x  =  0 )
120 oveq2 6098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  (
1  -  x )  =  ( 1  -  0 ) )
121 1m0e1 10428 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  -  0 )  =  1
122120, 121syl6eq 2489 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
1  -  x )  =  1 )
123119, 122oveq12d 6108 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  0  ->  (
x  /  ( 1  -  x ) )  =  ( 0  / 
1 ) )
124 ax-1cn 9336 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
125124, 113div0i 10061 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  /  1 )  =  0
126123, 125syl6eq 2489 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  (
x  /  ( 1  -  x ) )  =  0 )
127118, 126eqtrd 2473 . . . . . . . . . . . . . . . . 17  |-  ( x  =  0  ->  if ( x  =  1 , +oo ,  ( x  /  ( 1  -  x ) ) )  =  0 )
128 c0ex 9376 . . . . . . . . . . . . . . . . 17  |-  0  e.  _V
129127, 20, 128fvmpt 5771 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  ( 0 [,] 1 )  ->  ( F `  0 )  =  0 )
130112, 129ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( F `
 0 )  =  0
131130a1i 11 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( F `  0
)  =  0 )
132111, 131breq12d 4302 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( ( F `  ( `' F `  -e
z ) )  <_ 
( F `  0
)  <->  -e z  <_ 
0 ) )
133109, 132mtbird 301 . . . . . . . . . . . 12  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -.  ( F `  ( `' F `  -e
z ) )  <_ 
( F `  0
) )
134 eqid 2441 . . . . . . . . . . . . . . . 16  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  =  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )
13520, 134iccpnfhmeo 20476 . . . . . . . . . . . . . . 15  |-  ( F 
Isom  <  ,  <  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  F  e.  ( II Homeo ( (ordTop `  <_  )t  ( 0 [,] +oo ) ) ) )
136135simpli 455 . . . . . . . . . . . . . 14  |-  F  Isom  <  ,  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
137 iccssxr 11374 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  C_  RR*
138137, 8pm3.2i 452 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 ) 
C_  RR*  /\  ( 0 [,] +oo )  C_  RR* )
139 leisorel 12209 . . . . . . . . . . . . . 14  |-  ( ( F  Isom  <  ,  <  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  ( ( 0 [,] 1 )  C_  RR* 
/\  ( 0 [,] +oo )  C_  RR* )  /\  ( ( `' F `  -e z )  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1
) ) )  -> 
( ( `' F `  -e z )  <_  0  <->  ( F `  ( `' F `  -e z ) )  <_  ( F ` 
0 ) ) )
140136, 138, 139mp3an12 1299 . . . . . . . . . . . . 13  |-  ( ( ( `' F `  -e z )  e.  ( 0 [,] 1
)  /\  0  e.  ( 0 [,] 1
) )  ->  (
( `' F `  -e z )  <_ 
0  <->  ( F `  ( `' F `  -e
z ) )  <_ 
( F `  0
) ) )
14195, 112, 140sylancl 657 . . . . . . . . . . . 12  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( ( `' F `  -e z )  <_  0  <->  ( F `  ( `' F `  -e z ) )  <_  ( F ` 
0 ) ) )
142133, 141mtbird 301 . . . . . . . . . . 11  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -.  ( `' F `  -e z )  <_ 
0 )
14399le0neg1d 9907 . . . . . . . . . . 11  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( ( `' F `  -e z )  <_  0  <->  0  <_  -u ( `' F `  -e
z ) ) )
144142, 143mtbid 300 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -.  0  <_  -u ( `' F `  -e
z ) )
145 unitssre 11428 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] 1 )  C_  RR
146145, 95sseldi 3351 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( `' F `  -e z )  e.  RR )
147146recnd 9408 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( `' F `  -e z )  e.  CC )
148147negnegd 9706 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -u -u ( `' F `  -e z )  =  ( `' F `  -e z ) )
149148fveq2d 5692 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( F `  -u -u ( `' F `  -e
z ) )  =  ( F `  ( `' F `  -e
z ) ) )
150149, 111eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
( F `  -u -u ( `' F `  -e
z ) )  = 
-e z )
151 xnegeq 11173 . . . . . . . . . . . 12  |-  ( ( F `  -u -u ( `' F `  -e
z ) )  = 
-e z  ->  -e ( F `  -u -u ( `' F `  -e z ) )  =  -e  -e z )
152150, 151syl 16 . . . . . . . . . . 11  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -e ( F `  -u -u ( `' F `  -e z ) )  =  -e  -e z )
153 xnegneg 11180 . . . . . . . . . . . 12  |-  ( z  e.  RR*  ->  -e  -e z  =  z )
154153adantr 462 . . . . . . . . . . 11  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  -e  -e z  =  z )
155152, 154eqtr2d 2474 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  -> 
z  =  -e
( F `  -u -u ( `' F `  -e
z ) ) )
156 breq2 4293 . . . . . . . . . . . . 13  |-  ( y  =  -u ( `' F `  -e z )  ->  ( 0  <_ 
y  <->  0  <_  -u ( `' F `  -e
z ) ) )
157156notbid 294 . . . . . . . . . . . 12  |-  ( y  =  -u ( `' F `  -e z )  ->  ( -.  0  <_  y  <->  -.  0  <_  -u ( `' F `  -e
z ) ) )
158 negeq 9598 . . . . . . . . . . . . . . 15  |-  ( y  =  -u ( `' F `  -e z )  ->  -u y  =  -u -u ( `' F `  -e z ) )
159158fveq2d 5692 . . . . . . . . . . . . . 14  |-  ( y  =  -u ( `' F `  -e z )  ->  ( F `  -u y )  =  ( F `  -u -u ( `' F `  -e
z ) ) )
160 xnegeq 11173 . . . . . . . . . . . . . 14  |-  ( ( F `  -u y
)  =  ( F `
 -u -u ( `' F `  -e z ) )  ->  -e ( F `  -u y
)  =  -e
( F `  -u -u ( `' F `  -e
z ) ) )
161159, 160syl 16 . . . . . . . . . . . . 13  |-  ( y  =  -u ( `' F `  -e z )  ->  -e ( F `
 -u y )  = 
-e ( F `
 -u -u ( `' F `  -e z ) ) )
162161eqeq2d 2452 . . . . . . . . . . . 12  |-  ( y  =  -u ( `' F `  -e z )  ->  ( z  = 
-e ( F `
 -u y )  <->  z  =  -e ( F `  -u -u ( `' F `  -e z ) ) ) )
163157, 162anbi12d 705 . . . . . . . . . . 11  |-  ( y  =  -u ( `' F `  -e z )  ->  ( ( -.  0  <_  y  /\  z  =  -e ( F `  -u y
) )  <->  ( -.  0  <_  -u ( `' F `  -e z )  /\  z  =  -e ( F `  -u -u ( `' F `  -e z ) ) ) ) )
164163rspcev 3070 . . . . . . . . . 10  |-  ( (
-u ( `' F `  -e z )  e.  ( -u 1 [,] 1 )  /\  ( -.  0  <_  -u ( `' F `  -e
z )  /\  z  =  -e ( F `
 -u -u ( `' F `  -e z ) ) ) )  ->  E. y  e.  ( -u 1 [,] 1 ) ( -.  0  <_ 
y  /\  z  =  -e ( F `  -u y ) ) )
165106, 144, 155, 164syl12anc 1211 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  E. y  e.  ( -u 1 [,] 1 ) ( -.  0  <_ 
y  /\  z  =  -e ( F `  -u y ) ) )
166 iffalse 3796 . . . . . . . . . . . 12  |-  ( -.  0  <_  y  ->  if ( 0  <_  y ,  ( F `  y ) ,  -e ( F `  -u y ) )  = 
-e ( F `
 -u y ) )
167166eqeq2d 2452 . . . . . . . . . . 11  |-  ( -.  0  <_  y  ->  ( z  =  if ( 0  <_  y , 
( F `  y
) ,  -e
( F `  -u y
) )  <->  z  =  -e ( F `  -u y ) ) )
168167biimpar 482 . . . . . . . . . 10  |-  ( ( -.  0  <_  y  /\  z  =  -e
( F `  -u y
) )  ->  z  =  if ( 0  <_ 
y ,  ( F `
 y ) , 
-e ( F `
 -u y ) ) )
169168reximi 2821 . . . . . . . . 9  |-  ( E. y  e.  ( -u
1 [,] 1 ) ( -.  0  <_ 
y  /\  z  =  -e ( F `  -u y ) )  ->  E. y  e.  ( -u 1 [,] 1 ) z  =  if ( 0  <_  y , 
( F `  y
) ,  -e
( F `  -u y
) ) )
170165, 169syl 16 . . . . . . . 8  |-  ( ( z  e.  RR*  /\  -.  0  <_  z )  ->  E. y  e.  ( -u 1 [,] 1 ) z  =  if ( 0  <_  y , 
( F `  y
) ,  -e
( F `  -u y
) ) )
17182, 170pm2.61dan 784 . . . . . . 7  |-  ( z  e.  RR*  ->  E. y  e.  ( -u 1 [,] 1 ) z  =  if ( 0  <_ 
y ,  ( F `
 y ) , 
-e ( F `
 -u y ) ) )
17250, 171mprgbir 2784 . . . . . 6  |-  RR*  C_  { z  |  E. y  e.  ( -u 1 [,] 1 ) z  =  if ( 0  <_ 
y ,  ( F `
 y ) , 
-e ( F `
 -u y ) ) }
1737rnmpt 5081 . . . . . 6  |-  ran  G  =  { z  |  E. y  e.  ( -u 1 [,] 1 ) z  =  if ( 0  <_ 
y ,  ( F `
 y ) , 
-e ( F `
 -u y ) ) }
174172, 173sseqtr4i 3386 . . . . 5  |-  RR*  C_  ran  G
17549, 174eqssi 3369 . . . 4  |-  ran  G  =  RR*
176 dffo2 5621 . . . 4  |-  ( G : ( -u 1 [,] 1 ) -onto-> RR*  <->  ( G : ( -u 1 [,] 1 ) --> RR*  /\  ran  G  =  RR* ) )
17747, 175, 176mpbir2an 906 . . 3  |-  G :
( -u 1 [,] 1
) -onto-> RR*
178 breq1 4292 . . . . . . 7  |-  ( ( F `  z )  =  if ( 0  <_  z ,  ( F `  z ) ,  -e ( F `  -u z
) )  ->  (
( F `  z
)  <  if (
0  <_  w , 
( F `  w
) ,  -e
( F `  -u w
) )  <->  if (
0  <_  z , 
( F `  z
) ,  -e
( F `  -u z
) )  <  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) ) )
179 breq1 4292 . . . . . . 7  |-  (  -e ( F `  -u z )  =  if ( 0  <_  z ,  ( F `  z ) ,  -e ( F `  -u z ) )  -> 
(  -e ( F `
 -u z )  < 
if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) )  <->  if (
0  <_  z , 
( F `  z
) ,  -e
( F `  -u z
) )  <  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) ) )
180 simpl3 988 . . . . . . . . 9  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  z  <  w )
181 simpl1 986 . . . . . . . . . . 11  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  z  e.  ( -u 1 [,] 1 ) )
182 simpr 458 . . . . . . . . . . 11  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  0  <_  z )
183 breq2 4293 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  (
0  <_  y  <->  0  <_  z ) )
184 eleq1 2501 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  (
y  e.  ( 0 [,] 1 )  <->  z  e.  ( 0 [,] 1
) ) )
185183, 184imbi12d 320 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
( 0  <_  y  ->  y  e.  ( 0 [,] 1 ) )  <-> 
( 0  <_  z  ->  z  e.  ( 0 [,] 1 ) ) ) )
18619ex 434 . . . . . . . . . . . 12  |-  ( y  e.  ( -u 1 [,] 1 )  ->  (
0  <_  y  ->  y  e.  ( 0 [,] 1 ) ) )
187185, 186vtoclga 3033 . . . . . . . . . . 11  |-  ( z  e.  ( -u 1 [,] 1 )  ->  (
0  <_  z  ->  z  e.  ( 0 [,] 1 ) ) )
188181, 182, 187sylc 60 . . . . . . . . . 10  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  z  e.  ( 0 [,] 1
) )
189 simpl2 987 . . . . . . . . . . 11  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  w  e.  ( -u 1 [,] 1 ) )
19017a1i 11 . . . . . . . . . . . 12  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  0  e.  RR )
19198, 181sseldi 3351 . . . . . . . . . . . 12  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  z  e.  RR )
19298, 189sseldi 3351 . . . . . . . . . . . 12  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  w  e.  RR )
193191, 192, 180ltled 9518 . . . . . . . . . . . 12  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  z  <_  w )
194190, 191, 192, 182, 193letrd 9524 . . . . . . . . . . 11  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  0  <_  w )
195 breq2 4293 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
0  <_  y  <->  0  <_  w ) )
196 eleq1 2501 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
y  e.  ( 0 [,] 1 )  <->  w  e.  ( 0 [,] 1
) ) )
197195, 196imbi12d 320 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( 0  <_  y  ->  y  e.  ( 0 [,] 1 ) )  <-> 
( 0  <_  w  ->  w  e.  ( 0 [,] 1 ) ) ) )
198197, 186vtoclga 3033 . . . . . . . . . . 11  |-  ( w  e.  ( -u 1 [,] 1 )  ->  (
0  <_  w  ->  w  e.  ( 0 [,] 1 ) ) )
199189, 194, 198sylc 60 . . . . . . . . . 10  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  w  e.  ( 0 [,] 1
) )
200 isorel 6014 . . . . . . . . . . 11  |-  ( ( F  Isom  <  ,  <  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  ( z  e.  ( 0 [,] 1
)  /\  w  e.  ( 0 [,] 1
) ) )  -> 
( z  <  w  <->  ( F `  z )  <  ( F `  w ) ) )
201136, 200mpan 665 . . . . . . . . . 10  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  ->  ( z  < 
w  <->  ( F `  z )  <  ( F `  w )
) )
202188, 199, 201syl2anc 656 . . . . . . . . 9  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  (
z  <  w  <->  ( F `  z )  <  ( F `  w )
) )
203180, 202mpbid 210 . . . . . . . 8  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  ( F `  z )  <  ( F `  w
) )
204 iftrue 3794 . . . . . . . . 9  |-  ( 0  <_  w  ->  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) )  =  ( F `  w
) )
205194, 204syl 16 . . . . . . . 8  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) )  =  ( F `  w
) )
206203, 205breqtrrd 4315 . . . . . . 7  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  0  <_ 
z )  ->  ( F `  z )  <  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) )
207 breq2 4293 . . . . . . . 8  |-  ( ( F `  w )  =  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w
) )  ->  (  -e ( F `  -u z )  <  ( F `  w )  <->  -e ( F `  -u z )  <  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) ) )
208 breq2 4293 . . . . . . . 8  |-  (  -e ( F `  -u w )  =  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) )  -> 
(  -e ( F `
 -u z )  <  -e ( F `
 -u w )  <->  -e ( F `  -u z
)  <  if (
0  <_  w , 
( F `  w
) ,  -e
( F `  -u w
) ) ) )
209 simpl1 986 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  -.  0  <_  z )  ->  z  e.  ( -u 1 [,] 1 ) )
210 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  -.  0  <_  z )  ->  -.  0  <_  z )
211183notbid 294 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  ( -.  0  <_  y  <->  -.  0  <_  z ) )
212 negeq 9598 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  -u y  =  -u z )
213212eleq1d 2507 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  ( -u y  e.  ( 0 [,] 1 )  <->  -u z  e.  ( 0 [,] 1
) ) )
214211, 213imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  (
( -.  0  <_ 
y  ->  -u y  e.  ( 0 [,] 1
) )  <->  ( -.  0  <_  z  ->  -u z  e.  ( 0 [,] 1
) ) ) )
21541ex 434 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( -u 1 [,] 1 )  ->  ( -.  0  <_  y  ->  -u y  e.  ( 0 [,] 1 ) ) )
216214, 215vtoclga 3033 . . . . . . . . . . . . . 14  |-  ( z  e.  ( -u 1 [,] 1 )  ->  ( -.  0  <_  z  ->  -u z  e.  ( 0 [,] 1 ) ) )
217209, 210, 216sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  -.  0  <_  z )  ->  -u z  e.  ( 0 [,] 1
) )
218217adantr 462 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  ->  -u z  e.  ( 0 [,] 1 ) )
21924ffvelrni 5839 . . . . . . . . . . . 12  |-  ( -u z  e.  ( 0 [,] 1 )  -> 
( F `  -u z
)  e.  ( 0 [,] +oo ) )
220218, 219syl 16 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( F `  -u z
)  e.  ( 0 [,] +oo ) )
2218, 220sseldi 3351 . . . . . . . . . 10  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( F `  -u z
)  e.  RR* )
222221xnegcld 11259 . . . . . . . . 9  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  ->  -e ( F `  -u z )  e.  RR* )
22385a1i 11 . . . . . . . . 9  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
0  e.  RR* )
224 simpll2 1023 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  ->  w  e.  ( -u 1 [,] 1 ) )
225 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
0  <_  w )
226224, 225, 198sylc 60 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  ->  w  e.  ( 0 [,] 1 ) )
22724ffvelrni 5839 . . . . . . . . . . 11  |-  ( w  e.  ( 0 [,] 1 )  ->  ( F `  w )  e.  ( 0 [,] +oo ) )
228226, 227syl 16 . . . . . . . . . 10  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( F `  w
)  e.  ( 0 [,] +oo ) )
2298, 228sseldi 3351 . . . . . . . . 9  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( F `  w
)  e.  RR* )
230210adantr 462 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  ->  -.  0  <_  z )
231 simpll1 1022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
z  e.  ( -u
1 [,] 1 ) )
23298, 231sseldi 3351 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
z  e.  RR )
233 ltnle 9450 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( z  <  0  <->  -.  0  <_  z )
)
234232, 17, 233sylancl 657 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( z  <  0  <->  -.  0  <_  z )
)
235230, 234mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
z  <  0 )
236232lt0neg1d 9905 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( z  <  0  <->  0  <  -u z ) )
237235, 236mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
0  <  -u z )
238 isorel 6014 . . . . . . . . . . . . . 14  |-  ( ( F  Isom  <  ,  <  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  ( 0  e.  ( 0 [,] 1
)  /\  -u z  e.  ( 0 [,] 1
) ) )  -> 
( 0  <  -u z  <->  ( F `  0 )  <  ( F `  -u z ) ) )
239136, 238mpan 665 . . . . . . . . . . . . 13  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  -u z  e.  ( 0 [,] 1 ) )  ->  ( 0  <  -u z  <->  ( F ` 
0 )  <  ( F `  -u z ) ) )
240112, 218, 239sylancr 658 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( 0  <  -u z  <->  ( F `  0 )  <  ( F `  -u z ) ) )
241237, 240mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( F `  0
)  <  ( F `  -u z ) )
242130, 241syl5eqbrr 4323 . . . . . . . . . 10  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
0  <  ( F `  -u z ) )
243 xlt0neg2 11186 . . . . . . . . . . 11  |-  ( ( F `  -u z
)  e.  RR*  ->  ( 0  <  ( F `
 -u z )  <->  -e ( F `  -u z
)  <  0 ) )
244221, 243syl 16 . . . . . . . . . 10  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
( 0  <  ( F `  -u z )  <->  -e ( F `
 -u z )  <  0 ) )
245242, 244mpbid 210 . . . . . . . . 9  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  ->  -e ( F `  -u z )  <  0
)
246 elxrge0 11390 . . . . . . . . . . 11  |-  ( ( F `  w )  e.  ( 0 [,] +oo )  <->  ( ( F `
 w )  e. 
RR*  /\  0  <_  ( F `  w ) ) )
247246simprbi 461 . . . . . . . . . 10  |-  ( ( F `  w )  e.  ( 0 [,] +oo )  ->  0  <_ 
( F `  w
) )
248228, 247syl 16 . . . . . . . . 9  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  -> 
0  <_  ( F `  w ) )
249222, 223, 229, 245, 248xrltletrd 11131 . . . . . . . 8  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  0  <_  w )  ->  -e ( F `  -u z )  <  ( F `  w )
)
250 simpll3 1024 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  z  <  w
)
251 simpll1 1022 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  z  e.  (
-u 1 [,] 1
) )
25298, 251sseldi 3351 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  z  e.  RR )
253 simpll2 1023 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  w  e.  (
-u 1 [,] 1
) )
25498, 253sseldi 3351 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  w  e.  RR )
255252, 254ltnegd 9913 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  ( z  < 
w  <->  -u w  <  -u z
) )
256250, 255mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  -u w  <  -u z
)
257 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  -.  0  <_  w )
258195notbid 294 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( -.  0  <_  y  <->  -.  0  <_  w ) )
259 negeq 9598 . . . . . . . . . . . . . . 15  |-  ( y  =  w  ->  -u y  =  -u w )
260259eleq1d 2507 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( -u y  e.  ( 0 [,] 1 )  <->  -u w  e.  ( 0 [,] 1
) ) )
261258, 260imbi12d 320 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
( -.  0  <_ 
y  ->  -u y  e.  ( 0 [,] 1
) )  <->  ( -.  0  <_  w  ->  -u w  e.  ( 0 [,] 1
) ) ) )
262261, 215vtoclga 3033 . . . . . . . . . . . 12  |-  ( w  e.  ( -u 1 [,] 1 )  ->  ( -.  0  <_  w  ->  -u w  e.  ( 0 [,] 1 ) ) )
263253, 257, 262sylc 60 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  -u w  e.  ( 0 [,] 1 ) )
264217adantr 462 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  -u z  e.  ( 0 [,] 1 ) )
265 isorel 6014 . . . . . . . . . . . 12  |-  ( ( F  Isom  <  ,  <  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  ( -u w  e.  ( 0 [,] 1
)  /\  -u z  e.  ( 0 [,] 1
) ) )  -> 
( -u w  <  -u z  <->  ( F `  -u w
)  <  ( F `  -u z ) ) )
266136, 265mpan 665 . . . . . . . . . . 11  |-  ( (
-u w  e.  ( 0 [,] 1 )  /\  -u z  e.  ( 0 [,] 1 ) )  ->  ( -u w  <  -u z  <->  ( F `  -u w )  < 
( F `  -u z
) ) )
267263, 264, 266syl2anc 656 . . . . . . . . . 10  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  ( -u w  <  -u z  <->  ( F `  -u w )  < 
( F `  -u z
) ) )
268256, 267mpbid 210 . . . . . . . . 9  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  ( F `  -u w )  <  ( F `  -u z ) )
26924ffvelrni 5839 . . . . . . . . . . . 12  |-  ( -u w  e.  ( 0 [,] 1 )  -> 
( F `  -u w
)  e.  ( 0 [,] +oo ) )
270263, 269syl 16 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  ( F `  -u w )  e.  ( 0 [,] +oo )
)
2718, 270sseldi 3351 . . . . . . . . . 10  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  ( F `  -u w )  e.  RR* )
272264, 219syl 16 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  ( F `  -u z )  e.  ( 0 [,] +oo )
)
2738, 272sseldi 3351 . . . . . . . . . 10  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  ( F `  -u z )  e.  RR* )
274 xltneg 11183 . . . . . . . . . 10  |-  ( ( ( F `  -u w
)  e.  RR*  /\  ( F `  -u z )  e.  RR* )  ->  (
( F `  -u w
)  <  ( F `  -u z )  <->  -e ( F `  -u z
)  <  -e ( F `  -u w
) ) )
275271, 273, 274syl2anc 656 . . . . . . . . 9  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  ( ( F `
 -u w )  < 
( F `  -u z
)  <->  -e ( F `
 -u z )  <  -e ( F `
 -u w ) ) )
276268, 275mpbid 210 . . . . . . . 8  |-  ( ( ( ( z  e.  ( -u 1 [,] 1 )  /\  w  e.  ( -u 1 [,] 1 )  /\  z  <  w )  /\  -.  0  <_  z )  /\  -.  0  <_  w )  ->  -e ( F `
 -u z )  <  -e ( F `
 -u w ) )
277207, 208, 249, 276ifbothda 3821 . . . . . . 7  |-  ( ( ( z  e.  (
-u 1 [,] 1
)  /\  w  e.  ( -u 1 [,] 1
)  /\  z  <  w )  /\  -.  0  <_  z )  ->  -e
( F `  -u z
)  <  if (
0  <_  w , 
( F `  w
) ,  -e
( F `  -u w
) ) )
278178, 179, 206, 277ifbothda 3821 . . . . . 6  |-  ( ( z  e.  ( -u
1 [,] 1 )  /\  w  e.  (
-u 1 [,] 1
)  /\  z  <  w )  ->  if (
0  <_  z , 
( F `  z
) ,  -e
( F `  -u z
) )  <  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) )
2792783expia 1184 . . . . 5  |-  ( ( z  e.  ( -u
1 [,] 1 )  /\  w  e.  (
-u 1 [,] 1
) )  ->  (
z  <  w  ->  if ( 0  <_  z ,  ( F `  z ) ,  -e ( F `  -u z ) )  < 
if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) ) )
280 fveq2 5688 . . . . . . . 8  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
281212fveq2d 5692 . . . . . . . . 9  |-  ( y  =  z  ->  ( F `  -u y )  =  ( F `  -u z ) )
282 xnegeq 11173 . . . . . . . . 9  |-  ( ( F `  -u y
)  =  ( F `
 -u z )  ->  -e ( F `  -u y )  =  -e ( F `  -u z ) )
283281, 282syl 16 . . . . . . . 8  |-  ( y  =  z  ->  -e
( F `  -u y
)  =  -e
( F `  -u z
) )
284183, 280, 283ifbieq12d 3813 . . . . . . 7  |-  ( y  =  z  ->  if ( 0  <_  y ,  ( F `  y ) ,  -e ( F `  -u y ) )  =  if ( 0  <_ 
z ,  ( F `
 z ) , 
-e ( F `
 -u z ) ) )
285 fvex 5698 . . . . . . . 8  |-  ( F `
 z )  e. 
_V
286 xnegex 11174 . . . . . . . 8  |-  -e
( F `  -u z
)  e.  _V
287285, 286ifex 3855 . . . . . . 7  |-  if ( 0  <_  z , 
( F `  z
) ,  -e
( F `  -u z
) )  e.  _V
288284, 7, 287fvmpt 5771 . . . . . 6  |-  ( z  e.  ( -u 1 [,] 1 )  ->  ( G `  z )  =  if ( 0  <_ 
z ,  ( F `
 z ) , 
-e ( F `
 -u z ) ) )
289 fveq2 5688 . . . . . . . 8  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
290259fveq2d 5692 . . . . . . . . 9  |-  ( y  =  w  ->  ( F `  -u y )  =  ( F `  -u w ) )
291 xnegeq 11173 . . . . . . . . 9  |-  ( ( F `  -u y
)  =  ( F `
 -u w )  ->  -e ( F `  -u y )  =  -e ( F `  -u w ) )
292290, 291syl 16 . . . . . . . 8  |-  ( y  =  w  ->  -e
( F `  -u y
)  =  -e
( F `  -u w
) )
293195, 289, 292ifbieq12d 3813 . . . . . . 7  |-  ( y  =  w  ->  if ( 0  <_  y ,  ( F `  y ) ,  -e ( F `  -u y ) )  =  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) )
294 fvex 5698 . . . . . . . 8  |-  ( F `
 w )  e. 
_V
295 xnegex 11174 . . . . . . . 8  |-  -e
( F `  -u w
)  e.  _V
296294, 295ifex 3855 . . . . . . 7  |-  if ( 0  <_  w , 
( F `  w
) ,  -e
( F `  -u w
) )  e.  _V
297293, 7, 296fvmpt 5771 . . . . . 6  |-  ( w  e.  ( -u 1 [,] 1 )  ->  ( G `  w )  =  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) )
298288, 297breqan12d 4304 . . . . 5  |-  ( ( z  e.  ( -u
1 [,] 1 )  /\  w  e.  (
-u 1 [,] 1
) )  ->  (
( G `  z
)  <  ( G `  w )  <->  if (
0  <_  z , 
( F `  z
) ,  -e
( F `  -u z
) )  <  if ( 0  <_  w ,  ( F `  w ) ,  -e ( F `  -u w ) ) ) )
299279, 298sylibrd 234 . . . 4  |-  ( ( z  e.  ( -u
1 [,] 1 )  /\  w  e.  (
-u 1 [,] 1
) )  ->  (
z  <  w  ->  ( G `  z )  <  ( G `  w ) ) )
300299rgen2a 2780 . . 3  |-  A. z  e.  ( -u 1 [,] 1 ) A. w  e.  ( -u 1 [,] 1 ) ( z  <  w  ->  ( G `  z )  <  ( G `  w
) )
301 soisoi 6016 . . 3  |-  ( ( (  <  Or  ( -u 1 [,] 1 )  /\  <  Po  RR* )  /\  ( G :
( -u 1 [,] 1
) -onto-> RR*  /\  A. z  e.  ( -u 1 [,] 1 ) A. w  e.  ( -u 1 [,] 1 ) ( z  <  w  ->  ( G `  z )  <  ( G `  w
) ) ) )  ->  G  Isom  <  ,  <  ( ( -u
1 [,] 1 ) ,  RR* ) )
3024, 6, 177, 300, 301mp4an 668 . 2  |-  G  Isom  <  ,  <  ( ( -u
1 [,] 1 ) ,  RR* )
303 letsr 15393 . . . . . 6  |-  <_  e.  TosetRel
304303elexi 2980 . . . . 5  |-  <_  e.  _V
305304inex1 4430 . . . 4  |-  (  <_  i^i  ( ( -u 1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) )  e.  _V
306 ssid 3372 . . . . . . 7  |-  RR*  C_  RR*
307 leiso 12208 . . . . . . 7  |-  ( ( ( -u 1 [,] 1 )  C_  RR*  /\  RR*  C_ 
RR* )  ->  ( G  Isom  <  ,  <  ( ( -u 1 [,] 1 ) ,  RR* ) 
<->  G  Isom  <_  ,  <_  ( ( -u 1 [,] 1 ) ,  RR* ) ) )
3081, 306, 307mp2an 667 . . . . . 6  |-  ( G 
Isom  <  ,  <  (
( -u 1 [,] 1
) ,  RR* )  <->  G 
Isom  <_  ,  <_  (
( -u 1 [,] 1
) ,  RR* )
)
309302, 308mpbi 208 . . . . 5  |-  G  Isom  <_  ,  <_  ( ( -u
1 [,] 1 ) ,  RR* )
310 isores1 6022 . . . . 5  |-  ( G 
Isom  <_  ,  <_  (
( -u 1 [,] 1
) ,  RR* )  <->  G 
Isom  (  <_  i^i  (
( -u 1 [,] 1
)  X.  ( -u
1 [,] 1 ) ) ) ,  <_  ( ( -u 1 [,] 1 ) ,  RR* ) )
311309, 310mpbi 208 . . . 4  |-  G  Isom  (  <_  i^i  ( ( -u 1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) ) ,  <_  ( ( -u 1 [,] 1 ) ,  RR* )
312 tsrps 15387 . . . . . . . 8  |-  (  <_  e. 
TosetRel  ->  <_  e.  PosetRel )
313303, 312ax-mp 5 . . . . . . 7  |-  <_  e.  PosetRel
314 ledm 15390 . . . . . . . 8  |-  RR*  =  dom  <_
315314psssdm 15382 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  ( -u 1 [,] 1 ) 
C_  RR* )  ->  dom  (  <_  i^i  ( ( -u 1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) )  =  ( -u 1 [,] 1 ) )
316313, 1, 315mp2an 667 . . . . . 6  |-  dom  (  <_  i^i  ( ( -u
1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) )  =  ( -u 1 [,] 1 )
317316eqcomi 2445 . . . . 5  |-  ( -u
1 [,] 1 )  =  dom  (  <_  i^i  ( ( -u 1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) )
318317, 314ordthmeo 19334 . . . 4  |-  ( ( (  <_  i^i  (
( -u 1 [,] 1
)  X.  ( -u
1 [,] 1 ) ) )  e.  _V  /\ 
<_  e.  TosetRel  /\  G  Isom  (  <_  i^i  ( ( -u 1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) ) ,  <_  ( ( -u 1 [,] 1 ) ,  RR* ) )  ->  G  e.  ( (ordTop `  (  <_  i^i  (
( -u 1 [,] 1
)  X.  ( -u
1 [,] 1 ) ) ) ) Homeo (ordTop `  <_  ) ) )
319305, 303, 311, 318mp3an 1309 . . 3  |-  G  e.  ( (ordTop `  (  <_  i^i  ( ( -u
1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) ) ) Homeo (ordTop `  <_  ) )
320 xrhmeo.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
321 eqid 2441 . . . . . . 7  |-  (ordTop `  <_  )  =  (ordTop `  <_  )
322320, 321xrrest2 20344 . . . . . 6  |-  ( (
-u 1 [,] 1
)  C_  RR  ->  ( Jt  ( -u 1 [,] 1 ) )  =  ( (ordTop `  <_  )t  (
-u 1 [,] 1
) ) )
32398, 322ax-mp 5 . . . . 5  |-  ( Jt  (
-u 1 [,] 1
) )  =  ( (ordTop `  <_  )t  ( -u
1 [,] 1 ) )
324 ordtresticc 18786 . . . . 5  |-  ( (ordTop `  <_  )t  ( -u 1 [,] 1 ) )  =  (ordTop `  (  <_  i^i  ( ( -u 1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) ) )
325323, 324eqtri 2461 . . . 4  |-  ( Jt  (
-u 1 [,] 1
) )  =  (ordTop `  (  <_  i^i  (
( -u 1 [,] 1
)  X.  ( -u
1 [,] 1 ) ) ) )
326325oveq1i 6100 . . 3  |-  ( ( Jt  ( -u 1 [,] 1 ) ) Homeo (ordTop `  <_  ) )  =  ( (ordTop `  (  <_  i^i  ( ( -u
1 [,] 1 )  X.  ( -u 1 [,] 1 ) ) ) ) Homeo (ordTop `  <_  ) )
327319, 326eleqtrri 2514 . 2  |-  G  e.  ( ( Jt  ( -u
1 [,] 1 ) ) Homeo (ordTop `  <_  ) )
328302, 327pm3.2i 452 1  |-  ( G 
Isom  <  ,  <  (
( -u 1 [,] 1
) ,  RR* )  /\  G  e.  (
( Jt  ( -u 1 [,] 1 ) ) Homeo (ordTop `  <_  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   {cab 2427    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970    i^i cin 3324    C_ wss 3325   ifcif 3788   class class class wbr 4289    e. cmpt 4347    Po wpo 4635    Or wor 4636    X. cxp 4834   `'ccnv 4835   dom cdm 4836   ran crn 4837   -->wf 5411   -onto->wfo 5413   -1-1-onto->wf1o 5414   ` cfv 5415    Isom wiso 5416  (class class class)co 6090   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281   +oocpnf 9411   RR*cxr 9413    < clt 9414    <_ cle 9415    - cmin 9591   -ucneg 9592    / cdiv 9989    -ecxne 11082   [,]cicc 11299   ↾t crest 14355   TopOpenctopn 14356  ordTopcordt 14433   PosetRelcps 15364    TosetRel ctsr 15365  ℂfldccnfld 17777   Homeochmeo 19285   IIcii 20410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fi 7657  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-plusg 14247  df-mulr 14248  df-starv 14249  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-rest 14357  df-topn 14358  df-topgen 14378  df-ordt 14435  df-ps 15366  df-tsr 15367  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cn 18790  df-hmeo 19287  df-xms 19854  df-ms 19855  df-ii 20412
This theorem is referenced by:  xrhmph  20478
  Copyright terms: Public domain W3C validator