Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0tsmsd Unicode version

Theorem xrge0tsmsd 24176
Description: Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
xrge0tsmsd.g  |-  G  =  ( RR* ss  ( 0 [,]  +oo ) )
xrge0tsmsd.a  |-  ( ph  ->  A  e.  V )
xrge0tsmsd.f  |-  ( ph  ->  F : A --> ( 0 [,]  +oo ) )
xrge0tsmsd.s  |-  ( ph  ->  S  =  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
Assertion
Ref Expression
xrge0tsmsd  |-  ( ph  ->  ( G tsums  F )  =  { S }
)
Distinct variable groups:    A, s    F, s    ph, s    G, s
Allowed substitution hints:    S( s)    V( s)

Proof of Theorem xrge0tsmsd
Dummy variables  r  u  v  w  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0tsmsd.s . . . . 5  |-  ( ph  ->  S  =  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
2 iccssxr 10949 . . . . . . . . 9  |-  ( 0 [,]  +oo )  C_  RR*
3 xrge0tsmsd.g . . . . . . . . . . . 12  |-  G  =  ( RR* ss  ( 0 [,]  +oo ) )
4 xrsbas 16672 . . . . . . . . . . . 12  |-  RR*  =  ( Base `  RR* s )
53, 4ressbas2 13475 . . . . . . . . . . 11  |-  ( ( 0 [,]  +oo )  C_ 
RR*  ->  ( 0 [,] 
+oo )  =  (
Base `  G )
)
62, 5ax-mp 8 . . . . . . . . . 10  |-  ( 0 [,]  +oo )  =  (
Base `  G )
7 eqid 2404 . . . . . . . . . . . 12  |-  ( RR* ss  ( RR*  \  {  -oo } ) )  =  (
RR* ss  ( RR*  \  {  -oo } ) )
87xrge0subm 16694 . . . . . . . . . . 11  |-  ( 0 [,]  +oo )  e.  (SubMnd `  ( RR* ss  ( RR*  \  {  -oo } ) ) )
9 xrex 10565 . . . . . . . . . . . . . . 15  |-  RR*  e.  _V
10 difexg 4311 . . . . . . . . . . . . . . 15  |-  ( RR*  e.  _V  ->  ( RR*  \  {  -oo } )  e.  _V )
119, 10ax-mp 8 . . . . . . . . . . . . . 14  |-  ( RR*  \  {  -oo } )  e.  _V
12 simpl 444 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  x  e.  RR* )
13 ge0nemnf 10717 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  x  =/=  -oo )
1412, 13jca 519 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  (
x  e.  RR*  /\  x  =/=  -oo ) )
15 elxrge0 10964 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 0 [,] 
+oo )  <->  ( x  e.  RR*  /\  0  <_  x ) )
16 eldifsn 3887 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( RR*  \  {  -oo } )  <->  ( x  e.  RR*  /\  x  =/= 
-oo ) )
1714, 15, 163imtr4i 258 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,] 
+oo )  ->  x  e.  ( RR*  \  {  -oo } ) )
1817ssriv 3312 . . . . . . . . . . . . . 14  |-  ( 0 [,]  +oo )  C_  ( RR*  \  {  -oo }
)
19 ressabs 13482 . . . . . . . . . . . . . 14  |-  ( ( ( RR*  \  {  -oo } )  e.  _V  /\  ( 0 [,]  +oo )  C_  ( RR*  \  {  -oo } ) )  -> 
( ( RR* ss  ( RR*  \  {  -oo }
) )s  ( 0 [,] 
+oo ) )  =  ( RR* ss  ( 0 [,]  +oo ) ) )
2011, 18, 19mp2an 654 . . . . . . . . . . . . 13  |-  ( (
RR* ss  ( RR*  \  {  -oo } ) )s  ( 0 [,]  +oo ) )  =  ( RR* ss  ( 0 [,]  +oo ) )
213, 20eqtr4i 2427 . . . . . . . . . . . 12  |-  G  =  ( ( RR* ss  ( RR*  \  {  -oo }
) )s  ( 0 [,] 
+oo ) )
227xrs10 16692 . . . . . . . . . . . 12  |-  0  =  ( 0g `  ( RR* ss  ( RR*  \  {  -oo } ) ) )
2321, 22subm0 14711 . . . . . . . . . . 11  |-  ( ( 0 [,]  +oo )  e.  (SubMnd `  ( RR* ss  ( RR*  \  {  -oo } ) ) )  -> 
0  =  ( 0g
`  G ) )
248, 23ax-mp 8 . . . . . . . . . 10  |-  0  =  ( 0g `  G )
25 xrge0cmn 16695 . . . . . . . . . . . 12  |-  ( RR* ss  ( 0 [,]  +oo ) )  e. CMnd
263, 25eqeltri 2474 . . . . . . . . . . 11  |-  G  e. CMnd
2726a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
28 elfpw 7366 . . . . . . . . . . . 12  |-  ( s  e.  ( ~P A  i^i  Fin )  <->  ( s  C_  A  /\  s  e. 
Fin ) )
2928simprbi 451 . . . . . . . . . . 11  |-  ( s  e.  ( ~P A  i^i  Fin )  ->  s  e.  Fin )
3029adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  s  e.  Fin )
31 xrge0tsmsd.f . . . . . . . . . . 11  |-  ( ph  ->  F : A --> ( 0 [,]  +oo ) )
3228simplbi 447 . . . . . . . . . . 11  |-  ( s  e.  ( ~P A  i^i  Fin )  ->  s  C_  A )
33 fssres 5569 . . . . . . . . . . 11  |-  ( ( F : A --> ( 0 [,]  +oo )  /\  s  C_  A )  ->  ( F  |`  s ) : s --> ( 0 [,] 
+oo ) )
3431, 32, 33syl2an 464 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  s ) : s --> ( 0 [,] 
+oo ) )
3530, 34fisuppfi 14728 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( F  |`  s ) " ( _V  \  { 0 } ) )  e.  Fin )
366, 24, 27, 30, 34, 35gsumcl 15476 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  s
) )  e.  ( 0 [,]  +oo )
)
372, 36sseldi 3306 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  s
) )  e.  RR* )
38 eqid 2404 . . . . . . . 8  |-  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  =  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) )
3937, 38fmptd 5852 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) : ( ~P A  i^i  Fin ) --> RR* )
40 frn 5556 . . . . . . 7  |-  ( ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) : ( ~P A  i^i  Fin ) --> RR*  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  C_  RR* )
4139, 40syl 16 . . . . . 6  |-  ( ph  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR* )
42 supxrcl 10849 . . . . . 6  |-  ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR*  ->  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )  e.  RR* )
4341, 42syl 16 . . . . 5  |-  ( ph  ->  sup ( ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) , 
RR* ,  <  )  e. 
RR* )
441, 43eqeltrd 2478 . . . 4  |-  ( ph  ->  S  e.  RR* )
45 0ss 3616 . . . . . . . 8  |-  (/)  C_  A
46 0fin 7295 . . . . . . . 8  |-  (/)  e.  Fin
47 elfpw 7366 . . . . . . . 8  |-  ( (/)  e.  ( ~P A  i^i  Fin )  <->  ( (/)  C_  A  /\  (/)  e.  Fin )
)
4845, 46, 47mpbir2an 887 . . . . . . 7  |-  (/)  e.  ( ~P A  i^i  Fin )
49 0cn 9040 . . . . . . 7  |-  0  e.  CC
50 reseq2 5100 . . . . . . . . . . 11  |-  ( s  =  (/)  ->  ( F  |`  s )  =  ( F  |`  (/) ) )
51 res0 5109 . . . . . . . . . . 11  |-  ( F  |`  (/) )  =  (/)
5250, 51syl6eq 2452 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( F  |`  s )  =  (/) )
5352oveq2d 6056 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( G 
gsumg  ( F  |`  s ) )  =  ( G 
gsumg  (/) ) )
5424gsum0 14735 . . . . . . . . 9  |-  ( G 
gsumg  (/) )  =  0
5553, 54syl6eq 2452 . . . . . . . 8  |-  ( s  =  (/)  ->  ( G 
gsumg  ( F  |`  s ) )  =  0 )
5638, 55elrnmpt1s 5077 . . . . . . 7  |-  ( (
(/)  e.  ( ~P A  i^i  Fin )  /\  0  e.  CC )  ->  0  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) )
5748, 49, 56mp2an 654 . . . . . 6  |-  0  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) )
58 supxrub 10859 . . . . . 6  |-  ( ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR*  /\  0  e. 
ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) )  ->  0  <_  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  ) )
5941, 57, 58sylancl 644 . . . . 5  |-  ( ph  ->  0  <_  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
6059, 1breqtrrd 4198 . . . 4  |-  ( ph  ->  0  <_  S )
61 elxrge0 10964 . . . 4  |-  ( S  e.  ( 0 [,] 
+oo )  <->  ( S  e.  RR*  /\  0  <_  S ) )
6244, 60, 61sylanbrc 646 . . 3  |-  ( ph  ->  S  e.  ( 0 [,]  +oo ) )
63 letop 17224 . . . . . 6  |-  (ordTop `  <_  )  e.  Top
64 ovex 6065 . . . . . 6  |-  ( 0 [,]  +oo )  e.  _V
65 elrest 13610 . . . . . 6  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  ( 0 [,]  +oo )  e.  _V )  ->  ( u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo )
)  <->  E. v  e.  (ordTop `  <_  ) u  =  ( v  i^i  (
0 [,]  +oo ) ) ) )
6663, 64, 65mp2an 654 . . . . 5  |-  ( u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo ) )  <->  E. v  e.  (ordTop `  <_  ) u  =  ( v  i^i  ( 0 [,]  +oo ) ) )
67 inss1 3521 . . . . . . . . 9  |-  ( v  i^i  ( 0 [,] 
+oo ) )  C_  v
6867sseli 3304 . . . . . . . 8  |-  ( S  e.  ( v  i^i  ( 0 [,]  +oo ) )  ->  S  e.  v )
69 simplrl 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  v  e.  (ordTop `  <_  ) )
70 reex 9037 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
71 elrestr 13611 . . . . . . . . . . . . . . 15  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  RR  e.  _V  /\  v  e.  (ordTop `  <_  ) )  -> 
( v  i^i  RR )  e.  ( (ordTop ` 
<_  )t  RR ) )
7263, 70, 71mp3an12 1269 . . . . . . . . . . . . . 14  |-  ( v  e.  (ordTop `  <_  )  ->  ( v  i^i 
RR )  e.  ( (ordTop `  <_  )t  RR ) )
7369, 72syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( v  i^i  RR )  e.  ( (ordTop ` 
<_  )t  RR ) )
74 eqid 2404 . . . . . . . . . . . . . 14  |-  ( (ordTop `  <_  )t  RR )  =  ( (ordTop `  <_  )t  RR )
7574xrtgioo 18790 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  =  ( (ordTop `  <_  )t  RR )
7673, 75syl6eleqr 2495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( v  i^i  RR )  e.  ( topGen ` 
ran  (,) ) )
77 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  S  e.  v )
78 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  S  e.  RR )
79 elin 3490 . . . . . . . . . . . . 13  |-  ( S  e.  ( v  i^i 
RR )  <->  ( S  e.  v  /\  S  e.  RR ) )
8077, 78, 79sylanbrc 646 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  S  e.  ( v  i^i  RR ) )
81 tg2 16985 . . . . . . . . . . . 12  |-  ( ( ( v  i^i  RR )  e.  ( topGen ` 
ran  (,) )  /\  S  e.  ( v  i^i  RR ) )  ->  E. u  e.  ran  (,) ( S  e.  u  /\  u  C_  ( v  i^i  RR ) ) )
8276, 80, 81syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  E. u  e.  ran  (,) ( S  e.  u  /\  u  C_  ( v  i^i  RR ) ) )
83 ioof 10958 . . . . . . . . . . . . . 14  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
84 ffn 5550 . . . . . . . . . . . . . 14  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
85 ovelrn 6181 . . . . . . . . . . . . . 14  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( u  e. 
ran  (,)  <->  E. r  e.  RR*  E. w  e.  RR*  u  =  ( r (,) w ) ) )
8683, 84, 85mp2b 10 . . . . . . . . . . . . 13  |-  ( u  e.  ran  (,)  <->  E. r  e.  RR*  E. w  e. 
RR*  u  =  ( r (,) w ) )
87 simprrr 742 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ( r (,) w )  C_  (
v  i^i  RR )
)
8887adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  (
r (,) w ) 
C_  ( v  i^i 
RR ) )
89 inss1 3521 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  i^i  RR )  C_  v
9088, 89syl6ss 3320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  (
r (,) w ) 
C_  v )
9126a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  G  e. CMnd )
92 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  y  e.  ( ~P A  i^i  Fin ) )
93 elfpw 7366 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
9493simprbi 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
9592, 94syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  y  e.  Fin )
96 simp-4l 743 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ph )
9796, 31syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  F : A --> ( 0 [,] 
+oo ) )
9893simplbi 447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
9992, 98syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  y  C_  A )
100 fssres 5569 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( F : A --> ( 0 [,]  +oo )  /\  y  C_  A )  ->  ( F  |`  y ) : y --> ( 0 [,] 
+oo ) )
10197, 99, 100syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( F  |`  y ) : y --> ( 0 [,] 
+oo ) )
10295, 101fisuppfi 14728 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( `' ( F  |`  y ) " ( _V  \  { 0 } ) )  e.  Fin )
1036, 24, 91, 95, 101, 102gsumcl 15476 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( 0 [,]  +oo )
)
1042, 103sseldi 3306 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  RR* )
105 simprll 739 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  r  e.  RR* )
106105adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  r  e.  RR* )
107 simprrr 742 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  z  C_  y )
108 ssfi 7288 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  e.  Fin  /\  z  C_  y )  -> 
z  e.  Fin )
10995, 107, 108syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  z  e.  Fin )
110107, 99sstrd 3318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  z  C_  A )
111 fssres 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F : A --> ( 0 [,]  +oo )  /\  z  C_  A )  ->  ( F  |`  z ) : z --> ( 0 [,] 
+oo ) )
11297, 110, 111syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( F  |`  z ) : z --> ( 0 [,] 
+oo ) )
113109, 112fisuppfi 14728 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( `' ( F  |`  z ) " ( _V  \  { 0 } ) )  e.  Fin )
1146, 24, 91, 109, 112, 113gsumcl 15476 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  z
) )  e.  ( 0 [,]  +oo )
)
1152, 114sseldi 3306 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  z
) )  e.  RR* )
116 simprlr 740 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  r  <  ( G  gsumg  ( F  |`  z
) ) )
117 xrge0tsmsd.a . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  A  e.  V )
11896, 117syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  A  e.  V )
1193, 118, 97, 92, 107xrge0gsumle 18817 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  z
) )  <_  ( G  gsumg  ( F  |`  y
) ) )
120106, 115, 104, 116, 119xrltletrd 10707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  r  <  ( G  gsumg  ( F  |`  y
) ) )
12196, 44syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  S  e.  RR* )
122 simprlr 740 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  w  e.  RR* )
123122adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  w  e.  RR* )
12496, 41syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR* )
125 ovex 6065 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( G 
gsumg  ( F  |`  y ) )  e.  _V
126 reseq2 5100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( s  =  y  ->  ( F  |`  s )  =  ( F  |`  y
) )
127126oveq2d 6056 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( s  =  y  ->  ( G  gsumg  ( F  |`  s
) )  =  ( G  gsumg  ( F  |`  y
) ) )
12838, 127elrnmpt1s 5077 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  e.  ( ~P A  i^i  Fin )  /\  ( G  gsumg  ( F  |`  y
) )  e.  _V )  ->  ( G  gsumg  ( F  |`  y ) )  e. 
ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) )
12992, 125, 128sylancl 644 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) )
130 supxrub 10859 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR*  /\  ( G 
gsumg  ( F  |`  y ) )  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) )  ->  ( G  gsumg  ( F  |`  y ) )  <_  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  ) )
131124, 129, 130syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  <_  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
13296, 1syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  S  =  sup ( ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) , 
RR* ,  <  ) )
133131, 132breqtrrd 4198 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  <_  S
)
134 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  S  e.  ( r (,) w
) )
135 eliooord 10926 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( S  e.  ( r (,) w )  ->  (
r  <  S  /\  S  <  w ) )
136134, 135syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ( r  <  S  /\  S  < 
w ) )
137136simprd 450 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  S  <  w )
138137adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  S  <  w )
139104, 121, 123, 133, 138xrlelttrd 10706 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  <  w
)
140 elioo1 10912 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( r  e.  RR*  /\  w  e.  RR* )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  ( r (,) w )  <-> 
( ( G  gsumg  ( F  |`  y ) )  e. 
RR*  /\  r  <  ( G  gsumg  ( F  |`  y
) )  /\  ( G  gsumg  ( F  |`  y
) )  <  w
) ) )
141106, 123, 140syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  ( r (,) w )  <-> 
( ( G  gsumg  ( F  |`  y ) )  e. 
RR*  /\  r  <  ( G  gsumg  ( F  |`  y
) )  /\  ( G  gsumg  ( F  |`  y
) )  <  w
) ) )
142104, 120, 139, 141mpbir3and 1137 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( r (,) w ) )
14390, 142sseldd 3309 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  v )
144 elin 3490 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) )  <->  ( ( G  gsumg  ( F  |`  y
) )  e.  v  /\  ( G  gsumg  ( F  |`  y ) )  e.  ( 0 [,]  +oo ) ) )
145143, 103, 144sylanbrc 646 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) )
146145anassrs 630 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  e.  RR )  /\  (
( r  e.  RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  ( r (,) w )  C_  (
v  i^i  RR )
) ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) )
147146expr 599 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  e.  RR )  /\  (
( r  e.  RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  ( r (,) w )  C_  (
v  i^i  RR )
) ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G  gsumg  ( F  |`  z
) ) ) )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) )
148147ralrimiva 2749 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G  gsumg  ( F  |`  z
) ) ) )  ->  A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
149136simpld 446 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  r  <  S )
1501ad3antrrr 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  S  =  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  ) )
151149, 150breqtrd 4196 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  r  <  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  ) )
15241ad3antrrr 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  C_  RR* )
153 supxrlub 10860 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR*  /\  r  e. 
RR* )  ->  (
r  <  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )  <->  E. w  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) r  <  w ) )
154152, 105, 153syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ( r  <  sup ( ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) , 
RR* ,  <  )  <->  E. w  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w ) )
155151, 154mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  E. w  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w )
156 ovex 6065 . . . . . . . . . . . . . . . . . . . 20  |-  ( G 
gsumg  ( F  |`  z ) )  e.  _V
157156rgenw 2733 . . . . . . . . . . . . . . . . . . 19  |-  A. z  e.  ( ~P A  i^i  Fin ) ( G  gsumg  ( F  |`  z ) )  e. 
_V
158 reseq2 5100 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( s  =  z  ->  ( F  |`  s )  =  ( F  |`  z
) )
159158oveq2d 6056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  z  ->  ( G  gsumg  ( F  |`  s
) )  =  ( G  gsumg  ( F  |`  z
) ) )
160159cbvmptv 4260 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  =  ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  z
) ) )
161 breq2 4176 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  ( G  gsumg  ( F  |`  z ) )  -> 
( r  <  w  <->  r  <  ( G  gsumg  ( F  |`  z ) ) ) )
162160, 161rexrnmpt 5838 . . . . . . . . . . . . . . . . . . 19  |-  ( A. z  e.  ( ~P A  i^i  Fin ) ( G  gsumg  ( F  |`  z
) )  e.  _V  ->  ( E. w  e. 
ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w  <->  E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) ) ) )
163157, 162ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( E. w  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) r  <  w  <->  E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) ) )
164155, 163sylib 189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) ) )
165148, 164reximddv 23915 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
166165expr 599 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( r  e.  RR*  /\  w  e.  RR* )
)  ->  ( ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) ) )
167 eleq2 2465 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( r (,) w )  ->  ( S  e.  u  <->  S  e.  ( r (,) w
) ) )
168 sseq1 3329 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( r (,) w )  ->  (
u  C_  ( v  i^i  RR )  <->  ( r (,) w )  C_  (
v  i^i  RR )
) )
169167, 168anbi12d 692 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( r (,) w )  ->  (
( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  <-> 
( S  e.  ( r (,) w )  /\  ( r (,) w )  C_  (
v  i^i  RR )
) ) )
170169imbi1d 309 . . . . . . . . . . . . . . 15  |-  ( u  =  ( r (,) w )  ->  (
( ( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )  <->  ( ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) ) ) )
171166, 170syl5ibrcom 214 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( r  e.  RR*  /\  w  e.  RR* )
)  ->  ( u  =  ( r (,) w )  ->  (
( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) ) )
172171rexlimdvva 2797 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( E. r  e. 
RR*  E. w  e.  RR*  u  =  ( r (,) w )  ->  (
( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) ) )
17386, 172syl5bi 209 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( u  e.  ran  (,) 
->  ( ( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) ) )
174173rexlimdv 2789 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( E. u  e. 
ran  (,) ( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
17582, 174mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
176 simplrl 737 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  -> 
v  e.  (ordTop `  <_  ) )
177 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  S  =  +oo )
178 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  S  e.  v )
179177, 178eqeltrrd 2479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  +oo  e.  v )
180 pnfnei 17238 . . . . . . . . . . . 12  |-  ( ( v  e.  (ordTop `  <_  )  /\  +oo  e.  v )  ->  E. r  e.  RR  ( r (,] 
+oo )  C_  v
)
181176, 179, 180syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  E. r  e.  RR  ( r (,]  +oo )  C_  v )
182 simprr 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  ( r (,] 
+oo )  C_  v
)
183182ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( r (,]  +oo )  C_  v )
18426a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  ->  G  e. CMnd )
18594ad2antrl 709 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
y  e.  Fin )
186 simp-5l 745 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  ->  ph )
187186, 31syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  ->  F : A --> ( 0 [,]  +oo ) )
18898ad2antrl 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
y  C_  A )
189187, 188, 100syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( F  |`  y
) : y --> ( 0 [,]  +oo )
)
190185, 189fisuppfi 14728 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( `' ( F  |`  y ) " ( _V  \  { 0 } ) )  e.  Fin )
1916, 24, 184, 185, 189, 190gsumcl 15476 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  ( 0 [,]  +oo )
)
1922, 191sseldi 3306 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  RR* )
193 rexr 9086 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  e.  RR  ->  r  e.  RR* )
194193ad2antrl 709 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  r  e.  RR* )
195194ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
r  e.  RR* )
196 simprr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
z  C_  y )
197185, 196, 108syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
z  e.  Fin )
198196, 188sstrd 3318 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
z  C_  A )
199187, 198, 111syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( F  |`  z
) : z --> ( 0 [,]  +oo )
)
200197, 199fisuppfi 14728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( `' ( F  |`  z ) " ( _V  \  { 0 } ) )  e.  Fin )
2016, 24, 184, 197, 199, 200gsumcl 15476 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  z
) )  e.  ( 0 [,]  +oo )
)
2022, 201sseldi 3306 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  z
) )  e.  RR* )
203 simplrr 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
r  <  ( G  gsumg  ( F  |`  z )
) )
204186, 117syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  ->  A  e.  V )
205 simprl 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
y  e.  ( ~P A  i^i  Fin )
)
2063, 204, 187, 205, 196xrge0gsumle 18817 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  z
) )  <_  ( G  gsumg  ( F  |`  y
) ) )
207195, 202, 192, 203, 206xrltletrd 10707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
r  <  ( G  gsumg  ( F  |`  y )
) )
208 pnfge 10683 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  gsumg  ( F  |`  y
) )  e.  RR*  ->  ( G  gsumg  ( F  |`  y
) )  <_  +oo )
209192, 208syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  <_  +oo )
210 pnfxr 10669 . . . . . . . . . . . . . . . . . 18  |-  +oo  e.  RR*
211 elioc1 10914 . . . . . . . . . . . . . . . . . 18  |-  ( ( r  e.  RR*  /\  +oo  e.  RR* )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  ( r (,]  +oo )  <->  ( ( G  gsumg  ( F  |`  y
) )  e.  RR*  /\  r  <  ( G 
gsumg  ( F  |`  y ) )  /\  ( G 
gsumg  ( F  |`  y ) )  <_  +oo ) ) )
212195, 210, 211sylancl 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( ( G  gsumg  ( F  |`  y ) )  e.  ( r (,]  +oo ) 
<->  ( ( G  gsumg  ( F  |`  y ) )  e. 
RR*  /\  r  <  ( G  gsumg  ( F  |`  y
) )  /\  ( G  gsumg  ( F  |`  y
) )  <_  +oo )
) )
213192, 207, 209, 212mpbir3and 1137 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  ( r (,]  +oo )
)
214183, 213sseldd 3309 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  v )
215214, 191, 144sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) )
216215expr 599 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) )
217216ralrimiva 2749 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  ->  A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
218 ltpnf 10677 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  RR  ->  r  <  +oo )
219218ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  r  <  +oo )
220 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  S  =  +oo )
221219, 220breqtrrd 4198 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  r  <  S
)
2221ad3antrrr 711 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  S  =  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
223221, 222breqtrd 4196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  r  <  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
22441ad3antrrr 711 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR* )
225224, 194, 153syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  ( r  <  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )  <->  E. w  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w ) )
226223, 225mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  E. w  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w )
227226, 163sylib 189 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) ) )
228217, 227reximddv 23915 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
229181, 228rexlimddv 2794 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) )
230 ge0nemnf 10717 . . . . . . . . . . . . . 14  |-  ( ( S  e.  RR*  /\  0  <_  S )  ->  S  =/=  -oo )
23144, 60, 230syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  S  =/=  -oo )
23244, 231jca 519 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  e.  RR*  /\  S  =/=  -oo )
)
233232adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  ->  ( S  e.  RR*  /\  S  =/= 
-oo ) )
234 xrnemnf 10674 . . . . . . . . . . 11  |-  ( ( S  e.  RR*  /\  S  =/=  -oo )  <->  ( S  e.  RR  \/  S  = 
+oo ) )
235233, 234sylib 189 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  ->  ( S  e.  RR  \/  S  = 
+oo ) )
236175, 229, 235mpjaodan 762 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
237236expr 599 . . . . . . . 8  |-  ( (
ph  /\  v  e.  (ordTop `  <_  ) )  ->  ( S  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
23868, 237syl5 30 . . . . . . 7  |-  ( (
ph  /\  v  e.  (ordTop `  <_  ) )  ->  ( S  e.  ( v  i^i  ( 0 [,]  +oo ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) ) )
239 eleq2 2465 . . . . . . . 8  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  ( S  e.  u  <->  S  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
240 eleq2 2465 . . . . . . . . . 10  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  u  <->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) )
241240imbi2d 308 . . . . . . . . 9  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  (
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
)  <->  ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
242241rexralbidv 2710 . . . . . . . 8  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  ( E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
)  <->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
243239, 242imbi12d 312 . . . . . . 7  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  (
( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) )  <->  ( S  e.  ( v  i^i  (
0 [,]  +oo ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) ) )
244238, 243syl5ibrcom 214 . . . . . 6  |-  ( (
ph  /\  v  e.  (ordTop `  <_  ) )  ->  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  -> 
( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
245244rexlimdva 2790 . . . . 5  |-  ( ph  ->  ( E. v  e.  (ordTop `  <_  ) u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  ( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
) ) ) )
24666, 245syl5bi 209 . . . 4  |-  ( ph  ->  ( u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo ) )  -> 
( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
247246ralrimiv 2748 . . 3  |-  ( ph  ->  A. u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo ) ) ( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
) ) )
248 xrstset 16675 . . . . . . 7  |-  (ordTop `  <_  )  =  (TopSet `  RR* s )
2493, 248resstset 13575 . . . . . 6  |-  ( ( 0 [,]  +oo )  e.  _V  ->  (ordTop `  <_  )  =  (TopSet `  G
) )
25064, 249ax-mp 8 . . . . 5  |-  (ordTop `  <_  )  =  (TopSet `  G )
2516, 250topnval 13617 . . . 4  |-  ( (ordTop `  <_  )t  ( 0 [,] 
+oo ) )  =  ( TopOpen `  G )
252 eqid 2404 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
25326a1i 11 . . . 4  |-  ( ph  ->  G  e. CMnd )
254 xrstps 17227 . . . . . . 7  |-  RR* s  e.  TopSp
255 resstps 17205 . . . . . . 7  |-  ( (
RR* s  e.  TopSp  /\  ( 0 [,]  +oo )  e.  _V )  ->  ( RR* ss  ( 0 [,]  +oo ) )  e. 
TopSp )
256254, 64, 255mp2an 654 . . . . . 6  |-  ( RR* ss  ( 0 [,]  +oo ) )  e.  TopSp
2573, 256eqeltri 2474 . . . . 5  |-  G  e. 
TopSp
258257a1i 11 . . . 4  |-  ( ph  ->  G  e.  TopSp )
2596, 251, 252, 253, 258, 117, 31eltsms 18115 . . 3  |-  ( ph  ->  ( S  e.  ( G tsums  F )  <->  ( S  e.  ( 0 [,]  +oo )  /\  A. u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo )
) ( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) ) )
26062, 247, 259mpbir2and 889 . 2  |-  ( ph  ->  S  e.  ( G tsums 
F ) )
261 letsr 14627 . . . . 5  |-  <_  e.  TosetRel
262 ordthaus 17402 . . . . 5  |-  (  <_  e. 
TosetRel  ->  (ordTop `  <_  )  e. 
Haus )
263261, 262mp1i 12 . . . 4  |-  ( ph  ->  (ordTop `  <_  )  e. 
Haus )
264 resthaus 17386 . . . 4  |-  ( ( (ordTop `  <_  )  e. 
Haus  /\  ( 0 [,] 
+oo )  e.  _V )  ->  ( (ordTop `  <_  )t  ( 0 [,]  +oo ) )  e.  Haus )
265263, 64, 264sylancl 644 . . 3  |-  ( ph  ->  ( (ordTop `  <_  )t  ( 0 [,]  +oo )
)  e.  Haus )
2666, 253, 258, 117, 31, 251, 265haustsms2 18119 . 2  |-  ( ph  ->  ( S  e.  ( G tsums  F )  -> 
( G tsums  F )  =  { S } ) )
267260, 266mpd 15 1  |-  ( ph  ->  ( G tsums  F )  =  { S }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   {csn 3774   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   ran crn 4838    |` cres 4839    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   Fincfn 7068   supcsup 7403   CCcc 8944   RRcr 8945   0cc0 8946    +oocpnf 9073    -oocmnf 9074   RR*cxr 9075    < clt 9076    <_ cle 9077   (,)cioo 10872   (,]cioc 10873   [,]cicc 10875   Basecbs 13424   ↾s cress 13425  TopSetcts 13490   ↾t crest 13603   topGenctg 13620  ordTopcordt 13676   RR* scxrs 13677   0gc0g 13678    gsumg cgsu 13679    TosetRel ctsr 14580  SubMndcsubmnd 14692  CMndccmn 15367   Topctop 16913   TopSpctps 16916   Hauscha 17326   tsums ctsu 18108
This theorem is referenced by:  esumval  24394  esumel  24395  esumsn  24409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-xadd 10667  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-tset 13503  df-ple 13504  df-ds 13506  df-rest 13605  df-topn 13606  df-topgen 13622  df-ordt 13680  df-xrs 13681  df-0g 13682  df-gsum 13683  df-mre 13766  df-mrc 13767  df-acs 13769  df-ps 14584  df-tsr 14585  df-mnd 14645  df-submnd 14694  df-cntz 15071  df-cmn 15369  df-fbas 16654  df-fg 16655  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-ntr 17039  df-nei 17117  df-cn 17245  df-haus 17333  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-tsms 18109
  Copyright terms: Public domain W3C validator